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THE LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW
By W. F. GOPE anp D. R. HARTREE, F.R.S.

(Received 13 May 1947)
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The paper is concerned with the integration of the laminar boundary-layer equations for a com-
pressible fluid and is in three parts.

In Part I the boundary-layer equations for a compressible fluid are derived, reduced to non-
dimensional form, and their relation to the corresponding equations for an incompressible fluid
discussed. Methods of integrating them are considered, and it is shown that, provided there is no
pressure gradient in the main stream, the methods employed for incompressible flow are of practical
value. If there is a pressure gradient, then the complications introduced by compressibility are such
that general algebra must cease and numerical integration take its place at an early stage. This
means that approximate methods (such as Pohlhausen’s) of calculating separation lose their sim-
plicity, and there are indications that their accuracy will also suffer; so it is natural to consider the
practicability of direct integration of the equations, probably by series expansions.

In Part I1, suitable expansions in one independent variable with coefficients which are functions of
the other are obtained. Itisfound that the independent variables can be so chosen that the differential
equations for the coefficients in the expansions have the same general structure as for an incompres-
sible fluid. The boundary conditions and the limiting forms of the equations for zero Mach number
are investigated. The application of iterative methods to the equations is discussed.
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2 W. F. COPE AND D. R. HARTREE ON THE

In Part IIT the ENTAC is briefly described, and the methods of applying it to obtain solutions of
the equations derived in Part IT are described in some detail. Itisshown that, by proper choice of
independent variable, the results for zero pressure gradient can be put into a form in which they vary
only slowly with .#%. Linear interpolation in .#% between the tabulated values will thus provide
reliable first estimates of these quantities, and the accuracy can be improved, if required, by an
iterative process.

Tables of results are given.

1. INTRODUCTION

This paper is concerned with integrating the laminar boundary-layer equations for a com-
pressible fluid; the corresponding problem for an incompressible fluid is treated in Modern
developments in fluid dynamics (Goldstein 1938), Chapters 111, 1v and x1v, and, to avoid an exten-
sive bibliography, references (in the form F.D. p. ...) will be confined to this work so far
as possible, and familiarity with its contents must be assumed.

The study of the flow of a compressible fluid, or gas dynamics, brings difficulties of
notation. The subject involves hydrodynamics (or fluid dynamics), thermodynamics, and
in its practical applications aeronautics and steam engineering. These subjects have com-
peting notations and therefore a compromise is necessary. The solution adopted here is to
follow the notation of F.D. so far as possible, but, to avoid confusion with the gas constant
(R), Z is used for the Reynolds number and for logical consistency .# for the Mach number;
E and I are used for the internal energy and enthalpy or ‘total heat’ respectively.

Historically the work to be described arose first from an attempt to estimate, if only quali-
tatively, the effect of the boundary layer on the aerodynamic force coefficients of a projectile,
a study which emphasized the great dearth of information and led to the development of
certain approximate methods; and secondly from an attempt to calculate the position of
separation of the boundary layer. The photographs of figure 1, plate 1, are included as
a matter of interest to show the kind of conditions under which separation occurs in external
ballistics. The values of Z# involved range from about } million in a small supersonic wind
tunnel up to 100 million or more for a large shell, and it seems likely that in covering this
range laminar and turbulent boundary layers are involved, but there are reasons for thinking
that in applications to supersonic wind tunnels the boundary layer of the model is more
likely to be laminar over most of the range. Therefore while both cases are likely to be,
ultimately, of practical importance, the obvious course is to concentrate first on the laminar
layer which seems to be of immediate value in model work. An additional reason is provided
by the fact that the laminar layer is much more tractable analytically.

PART I. GENERAL SURVEY AND DERIVATION OF THE EQUATIONS

2. PRELIMINARY CONSIDERATIONS

It is well known that, although, strictly speaking, the influence of viscosity extends over
the whole field influenced by the body, solutions of the boundary-layer equations possess
the property of approximating closely to their asymptotic values a short distance from it,
and that thereafter, for all practical purposes, the influence of viscosity can be neglected.
It is therefore convenient to regard the boundary layer as increasing the thickness of the
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LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 3

body by the displacement thickness and to take the velocity of slip of the inviscid solution for
the body thus modified to be the velocity at the outer edge of the boundary layer. This
point is explicitly made because with compressible flow and supersonic velocities the
influence of the body is confined only to a portion of the fluid, and the velocity changes in
that portion may be much greater. Therefore the distinction between the ‘free stream’,
which is the inviscid flow before it is influenced by the body and is analogous to the ‘con-
ditions at infinity’ in incompressible flow, and the ‘main stream’, which is the flow after
it has been influenced by the body, is important. A subscript 1 will be used to denote the
‘free stream’ value of any quantity, p, denoting the static pressure in the free stream; a
subscript M to denote the ‘main stream’ value when it is not necessary to particularize the
exact position; a subscript s to denote that the ‘main stream’ at the outer edge of the boun-
dary layer is involved, U, denoting the velocity (not necessarily constant) at the outer edge
of the boundary layer; and subscript w to denote surface of the body, 7,, denoting the tem-
perature of the fluid in contact with the body.

The displacement and momentum thicknesses for a compressible fluid are so defined as
to leave their physical interpretations the same as for an incompressible fluid ; thus

M u
3;*<Ef (1— 4 )d, 2-1
0 LUy v (1)
g = M__'gu_(l_ﬁ_)d (2.2)
" Jo PaUy Uy v

The convention about non-dimensional coefficients is to take for the denominator the
dynamic head in the free stream, for instance:

¢,=T1,/%p, U2, the local skin friction coefficient, (2-3)
CfE;cJ‘ Todx/%p, U2, the average skin friction coefficient from 0 to . (2-4)
0

In the study of the boundary-layer equations of an incompressible fluid it is customary to
concentrate on solutions of the simplest case that can be taken, namely, the flat plate at
zero incidence with or without a pressure gradient in the main stream. There are two reasons
for this; first, the analytical and numerical complications are minimized ; and secondly, the
opinion has been expressed that ‘for most practical purposes it would seem to be sufficiently
accurate to use the skin friction curves for the flat plate to predict the skin friction drag of
a streamline body’ (F.D. p. 515). In the present case the complications are greater, and skin
friction in all the cases studied up to now has constituted a smaller percentage of the total
drag so that there is every reason for concentrating on the flat-plate case. For the sake of
completeness and to make comparison between the compressible and incompressible cases
easy, the boundary-layer equations for two-dimensional flow along a curved surface and
for axisymmetric flow past a rotating solid of revolution are derived later and are found not
to differ essentially from their counterparts in the case of an incompressible fluid; but it
seems unlikely that the enhanced accuracy of their solutions would compensate—save in
an exceptional case—for the greater labour involved. Finally, in applying flat-plate calcula-
tions to actual bodies it must be remembered that, with zero pressure gradient, U, = U,,
ex hypothest, and so care must be taken to relate the free-stream and main-stream velocities

correctly.
I-2
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4 W. F. COPE AND D. R. HARTREE ON THE

3. DERIVATION OF THE BOUNDARY-LAYER EQUATIONS

It is convenient to begin from the general equations of motion of a fluid all of whose
physical properties vary; in vector notation these equations are (Crocco 1939; Emmons &
Brainerd 1941; Cope 1942):

The equation of continuity or conservation of mass:

dp

The Navier-Stokes equation or conservation of momentum:
di - - - _
pjtq = pF—Vp-+pV2q+3uVA-+2{(Vp) Vig+ (V) {—34(Va). (3-2)

The energy equation or conservation of energy:

dE

P dt

In none of the references cited above is this equation given in its most general terms.

Careful examination of its derivation shows that (3-3) is restricted neither to a perfect gas

nor to one whose specific heats are constant, but is applicable to any fluid provided E is
a function of 7" only. The dissipation function is given by

& = u[2V{(qV) g} + C—2gVA 347, (3-4)

and is unaffected in form by the fact that viscosity is a variable.
An alternative form of the energy equation can be obtained in terms of the enthalpy; it is

P8 gy (k) T, (3:5)
butsince in this form it is now assumed that both E and 7 are functions of 7" only this equation
is necessarily restricted to a perfect gas, but no restriction to constant specific heats is as
yet implied. ‘

There are two main forms of the boundary-layer equations, namely, those for a com-
pressible and those for an incompressible fluid. But in many applications of the latter it
has been customary to ignore the energy equation, and to solve the mass and momentum
equations with only velocity as the dependent variable, and it has been found that this
procedure is adequate for the purpose in view. These applications are the subject of F.D.
Chapters m and 1v. But sometimes, for instance if heat sources are present, a knowledge of
the temperature is needed, and the existence of a ‘temperature (boundary) layer’ as well
as a ‘velocity (boundary) layer’ must be recognized and the energy equation used. These
applications, which are the subject of F.D. Chapter x1v, require an apparently illogical
system of equations in which the energy equation has been added to the incompressible
forms of the mass and momentum equations, and in which, (i) the velocity of sound is in-
finite in spite of the fact that (small) variations of pressure density and temperature are
permitted and (i) the physical properties of the fluid (such as viscosity) are constant. The
underlying rationale of this system and its justification is discussed with the aid of the
equations in reduced non-dimensional form in § 7.

+pd = B+ V{(KV) T} (3-3)
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Ficure 1. Photographs of 0-303 in. bullets in flight showing boundary layer separation.
Nominal velocity 1700 ft. per sec. Mach number about 1. Arrows point to approximate
position of separation. (a) Mark VIIIz. Yaw small. (b)) Mark VII. Yaw 10°.
(¢) Mark VII. Yaw 25°.
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LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 5

In the following discussion the boundary-layer equations are derived for a compressible
fluid whose physical properties (viscosity, thermal conductivity, etc.) are functions of tem-
perature, and without restriction on the Mach number and temperature differences existing
in the field of flow. The applications are restricted to perfect gases for which the Prandtl
number (0=xC,[k) is of order unity, which implies that the velocity and temperature layers
are of the same order of thickness, and are confined to steady motion; it is also assumed that
there are no sources of heat in the body or fluid. The derivation follows the lines of F.D.
pp- 610 to 615, and will be confined to modifications of that treatment which are necessary
because the restrictions that

L, ¥a ad UMGT,-T)
are small have been removed, and because the physical properties are no longer regarded
as constants. As a result, some terms in the full equations can no longer be neglected and will
be designated ‘new’.

Take then from any convenient origin, usually the leading edge in the case of a flat plate,
the x-axis along and the y-axis perpendicular to the plate. Then equation (3-1) becomes

32 on) + 35 () = 0, (30

1dp
can be regarded as small, nor can SdT"

1dp

and since neither —

1d :
b di nor 75— and the equation

cannot be reduced even approximately to the incompressible form.

Equation (3-2) yields two equations, namely,

AV Pv 20udv | dudv
(Pua—;ﬁ'ﬂ?)@)u = 0_x+§

dp 4( %u Ouodu %u  Oudu )
(/1;);5%—9}3})+ﬂ3?2+@@+§ﬂ“—‘axay*§%@ Yy ax (3-7a)
7 o\ _ 0p 4( % dudv 0% dudv  , 0% 20udu Oudu _
(/’”aﬁ/’”ay)”— aﬁg(ﬂ@“ﬁ@@)+/‘a—xz+5;ca;+%‘/‘m“§a—ya;ﬁa‘;a§- (3-7)
In (3:7a) the only ‘new’ term which must be considered is %% , so the equation becomes
J d\. _ 0p 0 ( Ou

In (3-7b) all the ‘new’ terms are O(8) or less and can be neglected, the equation becoming
0—_ (3-85)

Equation (3:-3) with @ written out in full becomes

d d du v
0 ugi o) T+ 5y)
02T 0koT  ,0*T 0kdT , (du  Ov\? du\?  (Iv\?2 dv  Ju\)?
Ko Taas ooy Wactay) 2l () G5 e
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6 W. F. COPE AND D. R. HARTREE ON THE
and the foilowing terms must be considered: all the left-hand side, and the terms
TR0
a2’ oy dy ~ dy) -
So the equation becomes
| AT 9T\ (Ju v\ 0 (,0T\, (du)2
{05y ) o) — 0y Koy ) 1ol (#10)
and is not yet restricted to a perfect gas; but with a view to further developments it is more
convenient to have this equation in another form. First, for a perfect gas p = RpT and

C, = yC, = yR|/(y—1), so the equation can be written (now restricted to a perfect gas, but
not to constant specific heats)

Y poful ﬁ) (_1_) u 0p_p29 { i(l)} (@)2 .
y—lpp(u(?ervﬁy p] "y—1dx Roy ké?y p t dy) ’ (3:11)
and finally, since o0 = yRu/(y—1) k, and with the further restriction to constant specific heats,
d J ludp 0 (pd 1\ y—1pu[(ou )
p(“¢7£+ 9y)< )+7'p9x ﬁy{5@<ﬁ)}+ y 17<0y) (3:12)

which is the form required.

Collecting results we have the equations of motion for the boundary layer of a flat plate
with a (possibly) supersonic main stream in what will be regarded as their standard form.
They are: :

The equation of continuity:

J J
2 (P) +@ (pv) = 0. (a)
The equation of momentum:
d 0 _dp 9
plugatog) =0t 5 (,tl ) ()
dx ' 9 “ox oy \"ay)’ (3-13)
with P_.
Y

The equation of energy:

d 8)() ludp (?{ﬂ(?()} ~l,u((?u)
+= +E— ¢
a3 G) 5 pae = ayloay y oy
For the case of two-dimensional flow near a cylindrical body take the origin at the forward
stagnation point, the axis of ¥ along and the axis of y perpendicular to the surface. A discussion,

which need not be given, on identical lines leads to a system of equations which differ from
the system (3-13) only in having

/

P pK[= O(1)], (3:140)

instead of dp/dy = 0, where K is the curvature of the body.
For the case of axisymmetric flow past a rotating solid of revolution take the same origin
and axes as above and (following F.D. p. 128) let r be the distance from the axis. Also let
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LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 7

w be the peripheral speed with an upper bound of the same order as U,,. Again the discussion
need not be given; the resulting system of equations is

N

(—%(pw) +;% (prv) =0, (@
( ;+v;y) ‘”“w;% Zfﬁay(”ay) |
Ufg; a_[: o], - ()t (315)
digerem)e iy |

O L T R Rt A

As stated earlier, these equations are given for the sake of completeness, and to demon-
strate their essential parallelism to the incompressible system; but they will not be used in
the sequel which is confined to the flat plate at zero incidence.

The flat-plate equations as a system seem to have been first given explicitly by Busemann
(1935),butitshould be noted that Pohlhausen (F.D. p. 627) successfully integrated the energy
equation of the incompressible system for zero pressure gradient many years before. Later
work has shown that some of his conclusions, and notably that I+ %,/0 («?+v2%) = const.
is a good approximation to the accurate solution of the energy equation, are surprisingly
little affected by the change to a more complicated system.

At the boundary of the plate # = v = 0, and we get

g_g ﬁy( (?y)
=), (o),

0%u u 0T du .

w(@'ﬁ)w’!“(ﬁ@ @)w at a given x,
and since the only case being considered is that of no heat sources in either gas or plate, there
is, in the steady state, no heat transfer between them, so

J

(g) =0 all «,
%/
2
and the boundary condition gives o _ ,uw(a—-u) . (3-16)
dx dy?/,,
In the main stream the velocity is related to the pressure gradient by
ap du,,

5e = Pl (3:17)
The momentum-integral equation (often loosely called the momentum equation), is
obtained by integrating (3-135) through the boundarylayer and using (3:134) to eliminate .

It is 49 1 dU, 1d
We | (5% CYm_ 9 2 WPy 1
S+ (5 +219)U S +9pde I,
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8 W. F¥. COPE AND D. R. HARTREE ON THE

In the main stream /- ;U2 is constant and the adiabatic law holds; these facts can be used
to eliminate the term in dp,,/dx from this equation and give the standard form

49, 5 ) 14U, _

e +{3 (2 )&}U M e, (3-18)

Finally, the same method could be applied to the energy equation on the lines of F.D.

pp- 614 and 615, to yield an energy-integral equation, but it does not seem that any useful
purpose would be served by the equation thus obtained since an approximate solution of
the energy equation is known.

4., METHODS OF SOLUTION

Obviously any method of solution, if it is to be of practical use, must be capable of yielding
numerical results and therefore all methods of solution are in a sense numerical. Never-
theless, it is convenient to divide methods of solution into categories which are distinguished
by the amount and nature of the preliminary algebraic treatment. From this point of view
the several categories are:

(¢) Methods depending on the momentum equation, for instance, the Pohlhausen
(F.D. p. 159) method of calculating separation.

(b) Methods depending on a change of independent variable, for instance von Mises’s
(F.D. p. 127) transformation of the equations with x and ¢ as independent variables as used
(F.D. p. 164) for the form of ‘inner’ and ‘outer’ solutions to calculate separation.

(¢) Methods depending on a series solution of the equations with or without a preliminary
transformation, for instance, the original and now classical solution (F.D. p. 135) for the
special case of zero pressure gradient.

(d) Methods which integrate the equations numerically as they stand, for instance, by
replacing derivatives by finite differences and solving the resulting equations as such.

Since this section is primarily concerned with algebra, consideration of 4 (d) will be
postponed until later in the paper when numerical methods in general are under discussion.

(a) Momentum-integral equation
The general principles of methods based on the momentum-integral equation for in-
compressible flow are given in F.D. pp. 131 to 134 and 156 to 160. They will be followed
here, and in addition it is analytically convenient to define a quantity a, a function of .# and
related to it by

(1~a)(1+ u//2)~1
or oczz,;—l.///Z/(1+Z~;;},//l2). | (4-1)

« as a function of .# is plotted as figure 2.
Under these circumstances

i) 0o D e
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LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 9
and the relations (3-16, 3-17) give

dU, ”
psa dx _ﬂwA s Ac = "'f (O)

The integrals can be reduced to

J— J)} 196zs{lga(l_lgja%_lzjajz)}’

8*25{1—27(

where J; and J, are defined by

el
I—Jaf’ o= o L+Jaf

1-0

T
/_/
//
3 05 —
A
///
|~
]
o 1 2 3 4 5

M
FiGURE 2. « as defined by (1-«) (1+7—-2-—1¢/{2) =1

It is also assumed that the generalized Bernoulli equation
total energy = I+ 4(4%2+v?%) = const.

is a solution of the energy equation (3:13c¢). This is justified on the grounds that (i) it is
assumed in deriving the original equations that ,/o = O(1), (ii) it can be shown that for
o =1, I+§(u*+v?) = const. is an exact solution in certain circumstances (Cope 1942),
(iii) numerical solutions extant show that /4-§,/o (#24-v?) = const. is an excellent approxi-
mation, over the whole range so far covered, to the true solution. The successful application
of the method, therefore, depends only on finding forms for f which satisfy the conditions
previously laid down, but it seems likely that the choice will be much more restricted than
for incompressible flow.
For zero pressure gradient dU,/dx, and with it 4, vanishes and (3-18) becomes

dd

T = o (4-2)
If we now assume the trigonometric form

f= sinz2—r 7 (4-3)

VoL. 241. ‘A, 2
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10 W. F. COPE AND D. R. HARTREE ON THE

(F.D. p. 157), J; and J, can be evaluated comparatively simply in finite terms to give

2 /1—a o
8:‘/8_——: 1_7_]’/\/ a arctan/\/m,

J{}Eﬁc/é\:l““{gA/ « arctanA/ * 1-“/(1_(1)},
o \m 1

5\

1—a —a«  J(1—a)
B o (4-4)
;\/@x = \/ﬂ{(lﬁa)ﬁjﬁ}_éa

R =[Sy (1 —a)],
Cod? = 21 [ /(1 —=a)’],

where J,=1,/0, a function of a, that is, of 4 only, and it is assumed that goc 7%.

This solution has been compared with an exact solution (Brainerd & Emmons 1942)
and seems to be in reasonable agreement. For the same value of # and over the range
0 <. <./10 the exact solution shows that C,,/% decreases from 1-327 to 1-209 (about 10 %),
whereas the trigonometric form (4-3) shows an increase from 1-316 to 1-367 (about 39).
It is probable that this change in C;,/Z is for all practical purposes negligible, and therefore
the sine solution has its uses as a convenient means of obtaining approximate values quickly.
Figures 3 and 4 have been included to give an idea of the sort of variations of §* and 9,
which occur as . increases. :

If there is a pressure gradient then (3-18) must be used in full, but before proceeding to
the compressible case it is convenient to revert for a moment to incompressible flow and
consider the Pohlhausen method of calculating separation for the most general form of
velocity distributions subject to the restriction that the functions used must form a one
parameter set with parameter 4. This form is

J

where F and G are unspecified functions of 7; the momentum equation becomes, in the
notation of F.D. p. 159, B 2U. 1
T~ M) LT g, (4:5)
2d —4e
where MA) == B —ser
() — 2F'(0) +{2G"(0) —2a—4c} A+ (20— 4d) A%+ 4eA®
s = ¢ 3dA—Bed? ’
and

1 1 1 ) 1 1
a:l_f Fdy, b:f Gy, c:l_a—f P2y, d:b—2f FGdy, e:f G2dy
0 0 0 0 . 0

and Zzpiz or AdUs.
)/ dx

The fact that g(4) is of the form (cubic in 4)/(quadratic in 4) for several particular forms
of F and G has been noted; the point of the above analysis is that it shows that the form of
g(4) as a function of 4 has nothing to do with the form of f as a function of 5. A detailed
examination of the steps by which (4-5) is derived shows that it arises quite naturally from
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LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 11

the assumption that fis a linear function of 4. The numerator of g(4) arises from ¢ x dU,/dx,
and so necessarily involves 43 and the denominator from % and involves 4?; thus it can be
seen that if f were assumed to be polynomial of the nth degree (an n-tic) in 4, then g(4)
would be of the form [(2rn+-1)-tic in 4] /[2n-tic in A]. The analysis of F.D. pp. 158 to 166 can,
of course, be recovered by substituting the quartic form for fin (4-5).

0-70

0-65

060 7

7
0-55 /

0-50
/

0-45 /

0-40

o%/8
N\

/

0-35 . -

0 05 1-0 15 2-:0 25 30 35 40 4-5 50
% .

8
Frcure 3. Laminar boundary layer, sinusoidal velocity distribution, & Ef (1 P ?] ) dy.
' 0 1Y

0-150
]
0125 \\\
N
0-100 \\
=3 \\
® v \\
T~
0-050
\
\
0-025
0 0-5 1-0 15 20 2-5 3-0 35 40 45 50
M
. . . e e e S pu u
Ficure 4. Laminar boundary layer, sinusoidal velocity distribution, &, = o (1 - F) dy.
0P1Yy 1
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12 W. F. COPE AND D. R. HARTREE ON THE
For corr{préssible flow assuming that

J=F+A4,G,
(3-18) becomes

drd—a(. J4dy  (J—d,
2’1%7»?[3 % {1— 2 "“/“f( ) )}]

Aol 1) 4 ) et (o +1) e} (A

{1 —+D e} +J2)Jgs]%%
1 da, ’

a, dx

+

— {F(0)+4,6'(0) (4-6)
In this equation a; is given as a function of x, J; and J, as functions both of x (through «,)
and of 4, and as before it is to be regarded as an equation for 4, or for one and only one
parameter that canberelated toit. Itshould be noted thatuntil J; and J, have been evaluated
it cannot be thrown into the form equivalent to (4-5).
It is immediately obvious that the algebra is going to be considerably heavier, and that
difficulties arise because the successful use of the method in general terms requires the

1
algebraic evaluation of integrals of the type f -1—_%]—” where —1 <4< 1 and finvolves the
0

dependent variable 4,. The possible forms for f are thus drastically restricted to quadratics
in g or sin 37y, and even these lead to integrals which change with the numerical value of
A4, from inverse trigonometric to inverse hyperbolic form and therefore require careful
interpretation. The fact that, in any particular case, it might be comparatively simple to
evaluate them numerically is here irrelevant, since we are only concerned at the moment
with algebraic treatment. Moreover, the restriction to simple forms for f necessarily means
that fewer boundary conditions will be satisfied and the accuracy of the solution suffers in
consequence. Since 4 is always less than unity it is permissible to expand the denominator
of the integrand and integrate term by term, but for high Mach numbers the resulting series
is only slowly convergent, and in any case this process is equivalent to assuming that fis a
polynomial in 4,. The discussion of (4-5) shows that this would lead to the analogues of /()
and g(4) involving high powers of 4,, and the discovery of the relevant roots of the latter,
an essential preliminary to further developments, might be quite difficult. A further point
to be noticed is that even supposing the integrals have been evaluated, one is still confronted
with a formidable equation with 4, probably an implicit function of the other variables.
Finally, attempts to work in terms of .#, or U, instead of a; have not resulted in any essential
simplification. The rather obvious inference to be drawn will be given later; the essential
point to be noticed at the moment is that the algebraic treatment of the problem has come
to a dead stop earlier than is the case with incompressible flow, that no analogue to (4+5)
exists, and that numerical methods of solution are necessary if any further progress is to
be made.
(b) Change of independent variable

Equation (3-134) shows that there is a stream function given by

p10Y [0y = pu,  p,0y|dx = —po. (4:7)
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LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 13

Therefore it is possible to transform the equations into forms (F.D. pp. 126 sqq.) with x
and ¢ as independent variables. For the particular case of zero pressure gradient (3-135)
becomes (Karman & Tsien 1938)
du* 0 du*
3% = g (V0 )
where u*, x*, etc., are new non-dimensional variables defined by
w*=ufU,, x*=x/L, p*=plp, p*=ppy and y*=(B|UL)Y,

where L is the length of the plate. This equation has been used by Karman & Tsien to obtain
values of C, which agree quite well with exact solutions. They assumed ¢ = 1 and used an
iterative method. The method of ‘inner and outer solutions’ (F.D. pp. 164 sqq.) represents
an application of the same technique to the problem of calculating separation. No attempt
has been made to derive the corresponding equation for compressible flow, since it seems
obvious that the algebraic complications would be at least as great as for Pohlhausen’s
method, and the method has the additional drawback that solution in terms of ¢ as in-
dependent variable has a very awkward singularity at ¢ = 0.

(¢) Series solutions

When there is no pressure gradient the solution of the equations of continuity and momen-
tum for incompressible flow, in terms of a new independent variable proportional to y//x,
is classical (F.D. pp. 135 to 136); and, as noted earlier, Pohlhausen has given a solution of
the energy equation for incompressible flow (F.D. p. 627). If there is a pressure gradient
then it is assumed that (3:17) holds in the main stream to this extent the solution is analytic-
ally an approximation, though numerically it will be satisfied to a high degree of accuracy
quite close to the plate. For the particular case of a constant velocity gradient

U =U—Ulx, 3plox =—pUi(U,—Uix),

and, again for the equations of continuity and momentum only, Howarth (1938 and F.D.
p- 172) has obtained a solution in the form

2y =2u* =13 (1) — (86)./{ (n) + (824 () — (48)

1
where = Ullx/ljia 2y = y([]l/vx)% = y(UI’/Vg)%) (49)
and the boundary conditions are -
fi(0) =f7(0) =0 (allj) and fi(0) =2, fi{(0) =14, fi(0)=0 (j>2).

This method of attack has the advantage that by working in terms of y/./x and x as in-
dependent variables the equations reduce to a system of ordinary equations which can be
solved successively. This feature is very important and renders the method practicable.

Emmons & Brainerd (1941, 1942) have shown that for zero pressure gradient the system
of equations (3-13) have a solution in which 4, v/, p and T are functions of y/,/x only, both
for constant viscosity and for viscosity a function of temperature. The equations then reduce
exactly to a set of ordinary differential equations and solutions which are exact in the
numerical sense can be obtained. Solutions for a series of values of . up to /10, with
B = 0-768, were obtained, and these, so far as is known, are the only exact solutions extant
and have been used as a standard of comparison for any approximate solutions obtained.
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14 W. F. COPE AND D. R. HARTREE ON THE

5. Discussion

In § 3 the boundary-layer equations for a compressible fluid are derived, and in §4 the
possibility of obtaining solutions in algebraic form is investigated.

If there is no pressure gradient in the main stream and if an approximate solution, tanta-
mount to putting ¢ = 1, of the energy equation is used, then any of the methods used for
obtaining approximate solutions in the incompressible flow case seem to be practicable.
In particular, it is shown that the assumption of the trigonometric form (4-3) for the velocity
distribution enables the equations to be integrated comparatively simply in finite terms and
the resultant solution is sufficiently close to the ‘exact’ solution to be acceptable as a
convenient approximation.

For the case of a pressure gradient in the main stream the Pohlhausen method has been
selected for detailed examination as it is the simplest although the least accurate (F.D.
p. 162) of the methods used in the incompressible case. It is shown that with the same
approximate solution of the energy equation complications arise from two causes. First,
the integrals for displacement and momentum thicknesses involve the velocity distribu-
tion and the parameter 4, in their denominator. This drastically restricts the range of
velocity distributions of practical value and prevents the use of algebraic methods in all
but the earliest stages. Secondly, the ‘momentum’ equation itself is much more com-
plicated and, even if the problem of integration were overcome, would almost certainly
involve much heavy algebra to prepare it for the final integration. This, of course, means
that algebra must be abandoned at an earlier stage than for incompressible flow and
numerical methods employed, and that even then there is no guarantee that the method
will be less inaccurate and it has certainly lost its simplicity. Because of this result no attempt
has been made to apply the method of ‘inner and outer solutions’, which again is only
approximate, to compressible flow. The conclusion seems to be that any method of cal-
culating the behaviour of the laminar boundary layer in compressible flow when there is
a pressure gradient in the main stream is going to involve a major computing operation, and
that therefore the proper line of attack is to investigate the practicability of solving the
boundary-layer equations (3-13), probably by series expansions on Howarth’s lines.

But beforc numerical results can be obtained it is necessary to adopt a specific law of
variation of viscosity with temperature and a value for ¢. The important fluid is air which,
for all practical purposes, can be regarded as a diatomic perfect gas whose variation of
viscosity with temperature is best represented by a formula of Sutherland’s type:

pocTH(T+C) with C~114°C. (5:1)
There are advantages, in both analytical and numerical work, in a power law variation
poc TP, (5-2)

especially if # can be taken to be a simple fraction. The use of a formula of this type as an
interpolation formula implies that T

B= 15—

so that £ is a function of the temperature range over which the formula is to be used and the

(5-3)

extent of the range is important.


http://rsta.royalsocietypublishing.org/

a
N A

A A

JA '\

/ y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

yA \
V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 15

Practical applications of numerical work can conveniently be divided into two categories:

(a) Measurements in supersonic wind tunnels 90° < 7'<<300° K approximately.

(b) Measurements in firing trials and other applications in free air 250°< 7'<600° K
approximately.

The method of finding / is the usual one of fitting the best straight line to a plot of log x
against log 7" over the selected range of 7', and a certain amount of latitude is permissible,
since numerical work (Emmons & Brainerd 1942) shows that the results of calculations are
not very sensitive to the choice of f.

Figure 5 is the plot for range (a) ; the slope of the log z—log T'line is 0-884, and for numerical
convenience this is rounded up to §. For range (%) the accepted value of f is 0-768, but again
for numerical convenience this is rounded down to £. Accordingly, it is suggested that

for range (a) 90°<T<300°K, puocT?, (5-4a)
and for range (b) 250°< T<600°K, pocTH, (5-40)

are adequate interpolation formulae for the purpose in view.

y/d

/ |
22 /
& ///
—
g /
g 20 4
8 0 ocTOT68 /(/ 4 oc T 0884
3 (as used by /// (p oc T % adopted)
2 Emmons & Brainerd),
o0
<
/]
1-8 // pd
’c/
18 2-0 2:2 24 2:6

log T (T in °K)
Ficure 5. Law of variation of viscosity with temperature for air at low temperatures.
The kinetic theory (Jeans 1940, p. 190) gives
o =4y/(9y—5) (a constant)
= 0-737 for a diatomic gas with y = 1-40, (5°5)
but an examination of the available data for air (Kaye & Laby 1944) suggests that this value

is a few per cent too high, and that the most convenient value which is at the same time
consonant with the latest data is

0= 0715 (Jo = 08456, Y7 = 0-8942). (56)

It is worth noting in passing, as a curious numerical coincidence, that the simplest (or
‘billiard ball’) form of the kinetic theory gives

oc=1/y =0-7143...!
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16 W. F. COPE AND D. R. HARTREE ON THE

6. REDUCTION OF THE EQUATIONS TO NON-DIMENSIONAL FORM

It was stated earlier that when there is no pressure gradient the dp/dx term in (3-135)
drops out and that Emmons & Brainerd have shown that the system of equations (3-13) have
a solution in which u, v./x, p and T are functions of y/./x only; the equations can then be
reduced exactly to a set of three ordinary differential equations whose solutions can be
evaluated mechanically by the differential analyzer. Emmons & Brainerd (1941, 1942)
have given solutions of this system for constant viscosity and for various viscosity laws
respectively, and these have been used as a standard of comparison for the various approxi-
mate solutions given earlier. In addition, their work shows that in this case the boundary
layer does not separate from the solid boundary, so that, as in the incompressible case, it is
necessary to have retarded flow in order to get separation.

The fact that for no pressure gradient the solution is a function of y/,/x only suggests that
when there is a pressure gradient it will be possible to work as in the incompressible case in
terms of x and y/./x as independent variables, and it can be hoped that the variation of the
various quantities with x at constant y/./x will be slow, smooth and easy to handle.

Thesimplest case to consider seems to be that of constant pressure gradientin the main stream,
rather than constant velocity gradient as taken by Howarth (1938 and F.D. p. 173); more-
over measurements show that for flow round a projectile with a streamline base (figure 1,
top photograph) the pressure gradient is often nearly constant over the streamlined portion,
so that the choice of constant pressure gradient corresponds to an eminently practical case.

For generality let the pressure gradient be written

9 o
L — WL UGU DY), (6:1)

where G(0) = 1, so that U] has the dimensions of a velocity gradient and is positive for
retarded flow; for constant pressure gradient G = 1. Convenient dimensionless variables
are then obtained by substitutions akin to those used by Howarth, namely,

£=Ux/Uy, n* = Jy(U/r )}, }
w* =ufU,, v*=v(x/Up)t=o(E/Up)t

For an incompressible fluid, 7* as here defined is the same as Howarth’s (1938) . But for
a compressible fluid, in order to retain the closest similarity later to Howarth’s equations,
it is convenient to reserve the symbol # for another quantity which will be introduced later
(equation (6-9) below), and which reduces to #* in the incompressible case. Emmons &
Brainerd (1941, 1942) use 7 = y(U;/v;x)}; the factor § has been introduced in the definition
of 7* to agree with Howarth’s usage and to simplify the checking of later formulae by
comparison with his.

In terms of these variables (6-1) becomes

(6:2)

2 (p\ p U2 o .
() =756 =z, (63)
and (3-13a) becomes (250—{5—77* 9—:71)'0 +3z (pv*) = 0; (6-4)

d 3 _Uj d _
also ugj—c—l—v&y £{2 *gg (n u*-—v*)%—*}. (6-5)
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LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 17
Now in equations (3-134,¢), v only occurs in the combination pﬁ(ua% —f—v%), so v* only
1
occurs in the combination I—'g (p*u* —ov*). It is therefore convenient to write
1
w =2 (prux—v%); (6-6)
P1
. ow a\ pu*
from (6-4) it follows that = ( 1 +2g5£) e, (67a)
and in terms of the variables (6-2), (6-6) equations (3-13 4, ¢) become
J (pou*y pu* ou* 3u*
67*([ ET*) = HEE) T4 o 2 gy (6-70)
1 9 (oip 0 ﬂl) “ zﬁ&(E)l by pu J_(p
oy * {0;7377 ( }+(7 DA p \age) = AT R AT 565( ) g ( )

(6-7¢)
The terms arising directly from the pressure-gradient terms in (3-136) and (3:13¢) are
450(5) in (6-76) and 4,///%‘% u*tG(E) in (6+7¢). For zero pressure gradient these terms are

absent and p,/p in the second term on the left-hand side of (6-7¢) is unity. The equations
then assume a form in which the 9/d¢ terms are also absent so that they reduce, for constant
o, to

dw _p
A @
d (pdu*\ du*
azr(m—)—“%ﬁ’ o (6:5)
1 d (p d pl)}_ _ Qﬂ(du) d (p
7 dp* {ﬂ dn* ( = DA gyE) = TR g ( ) Q

These are equations (5), (6) and (7) of Emmons & Brainerd (1942) in different notation,
the relation between the notations being as follows:

Here Ky pilp 2% w* v* 2w
Emmons & Brainerd (1942) ¢ 0=T/Ty n U V ¢/0

the second of these relationships following from the fact that p is constant in Emmons &
Brainerd (1942) so that 77T, = p,/p.

A further change of independent variable simplifies considerably the numerical or
mechanical integration both of the set of equations (6:8) for zero pressure gradient and, at
least for constant ¢, that of the more general equations (6-7). This is the use of

p=| Bay* (6-9)

as an independent variable in place of #*, the integration in (6-9) being understood to be
carried out at constant £. This simplifies the highest derivative term in (6-74) and also, for
constant ¢, that in (6-7¢), with important results in the later treatment of these equations.

Vor. 241. A. 3
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18 W. F. COPE AND D. R. HARTREE ON THE
d 0

Th £ ——) :(—-) 6-10

. ﬂl(ﬁfz* ¢ \I1)g (6:10)

9 (9 L (%* (i)
and (ag),, = (ag),,f( o ),, ¥l
: ~(9 _ﬁfl_f_?sz(_ﬁ_) :

so that from (6-10) i (6&'),7* = (ag) (6§ )7] o)y (6:11)
where *—j 'udﬂ, (6-12)

the integration being carried out at constant §. Also

,u{qu* (8) wﬁ} 2u pu* ((7) ( 2,0u* ) 613
m\ py ¢ 9 ol mop J 73 P 3 9 /oy (6-13)
Further, for .#, = 0 it is clear that equation (6-7¢) has the solution p,/p = 1, and the form

of the equations suggests that for .#,+ 0 the value of (p,/p—1) at any point is of order .#%.
Hence it seems convenient to define a function r by

%: 1+.42r, (6-14)

though, for a reason which will appear later, this substitution will not for the present be made
in the combination pu*/p,. It will appear later (§11) that for .#2 = 0 the solution of the
equation for r is finite, which justifies this step.

Formula (6-13) suggests the use of the quantity

* p*
W = 2&_ on~ 6-15
BB (6:15)
in the place of w. From equations (6-7a) and (6-11) it follows that it satisfies the equation
a2 ()
——], 6-16
ap %), (6:164)
and in terms of 5 as independent variable, equations (6-7 b, c) become
0%u* L 4,0u U Ju*
2W ——, b
=, GO+ § g Y
190, 0 by (Ou* p 4 9 (6:16)
0,07 py(oU Ll xc /’” lad wor
0187](0 07])+(y )p ( ) 4§ GO+ 535 3’7’ Q
or, for constant o,
1 0% h (Bu ) ,up, " dpu* u ar ,
e —1 =4 G —2W-. 6-1
map 0T ) =4y OO, ﬂlgﬁé 7 (6:16¢)

Equations (6:16) could, of course, have been obtained from equations (3-13) by the
transformation

£= Uix/Uy 1 = 3G (ufi) dy,
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LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 19

but the algebra of this direct transformation is somewhat tricky, and the point of the use
of 5 rather than #* is more apparent from the equations in the form (6-7) than from the
form (3-13). »

If ¥ is the stream function defined by (4-7), then equation (6-16a) gives

W = (ULEv) ook | (6:17)

For zero pressure gradient, when the terms involving £ and d/0¢ are absent, these equations
reduce to

dw p u* )
dy g 11407 (a)
du* du’*
1d? du*\? dr
sapt 00 (ay) =~ ©

Since 7 does not occur explicitly in (6-18) their order can be depressed by a change of
independent variable, most conveniently, probably, to #* since they can be written

d (du*
o (73;,“) =—2u, (2)

d?r dr d.
Gt o(r=1) = 20—y gL, ()

(619)

It is possible that this depression of the order of the equations would simplify the problem
of satisfying the two-point boundary conditions, but otherwise it does not seem that this
transformation has much practical advantage, except in the special case ¢ = 1 when the
term on the right-hand side of (6-195) disappears and the equation can be integrated
formally ; this case has already been considered by Busemann and by von Karman & Tsien.

For the equations for a non-zero pressure gradient, in the form (6:7) or (6-16), there are
several methods of approach, which will be considered further in § 8.

7. THE RELATION BETWEEN THE LAMINAR BOUNDARY-LAYER EQUATIONS
FOR A COMPRESSIBLE AND AN INCOMPRESSIBLE FLUID

Bernoulli’s equation shows that for .#3< 1, and for a given variation of U/U, in the main
stream (and therefore a given relation between x and §), dp/dx is of order U%, so that G(§)
is O(1) in .#3. Then in the limit .#% - 0, the terms in .#7 in (6-7¢) disappear, and this equa-
tion has then the solution

p1/p = constant = 1.

Then the factor p/p, disappears in equations (6:7 a, ) and these then become

a
Mzi (1+2§0€)u’ @
(7-1)
d (udu* du* du*
37 iy ) — 4E0E) + 4w G —2u, ()

3-2
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20 W. F. COPE AND D. R. HARTREE ON THE

which are the laminar boundary-layer equations for incompressible flow, without restric-
tion to uniform viscosity and with 2w in place of the function written fin the treatment of
the corresponding equations for constant viscosity.

For an incompressible fluid whose viscosity is a function of temperature, a third equation
would be necessary in order to give the temperature variation in the boundary layer. This
equation can not, of course, be obtained from (6-7¢), since in deriving this equation the equa-
tion of state of a perfect gas has been used in order to substitute both for the temperature 7°
in terms of p and p, and also for C, in terms of y and the gas constant R, and neither of these
substitutions is valid for an incompressible fluid. It would be necessary to go back to the
energy equation in the basic form (8-10). With this understanding, then, regarding the
treatment of the variation of viscosity with temperature if appreciable, we can say that the
continuity and momentum equations for the laminar boundary layer in an incompressible
fluid are the limits as .#% — 0 of the corresponding equations for a compressible fluid.

For the flow of a perfect gas, it follows from (6-14), (6-16¢) that if for .#% = 0 equation
(6-16¢) has a solution, say ¥, satisfying the boundary conditions, as is the case (see §11
below) then, for .#%<1, (p/p,) is given, to first order in .#%, by

prlp = 1+ M3rO,

The energy equation (6-18¢) for zero pressure gradient only involves .#% through the term
on the right-hand side, and it could be hoped that it would be possible to express its solution
in a formwhich only varied slowly with .#%. This partially explains why Pohlhausen’ssolution
I+ Jo (u?+v%) = const. (see§ 3), of the incompressible form of the equation has been found
to be a useful approximation for .#3<10.

A full discussion of the energy equation is outside the scope of this paper. The following
points seem, however, to deserve mention here. First, for liquids the Prandtl number ¢ is
a function of temperature, so that the omission of the factor ¢/, may notbe justified. Secondly,
for differentliquids o may have valuesfromabout 5% (mercury) toabout 200 (heavy oil) instead
of being of order unity as it is for gases, so the velocity and temperature layers may not be of
the same orders of thickness, and it should not be assumed without close examination that
the surviving terms of the full equation (3-9) will be those of equation (3-10). Thirdly, cases
may arise in which it becomes necessary to take into account not only the variation of
viscosity of a liquid with temperature but also its variation of density with temperature,
although the variation of density with pressure may be negligible. In such cases the ‘com-
pressible’ equations of continuity and momentum (6:16a,5) would be applicable but the
form (6-16¢) of the energy equation would not, and the latter would have to be replaced
by one appropriate to the equation of state of the liquid in the temperature and pressure
range contemplated. Further, the appropriate system of approximate equations might be
other than the equations of the laminar boundary layer; in lubrication problems, for
example, a ‘slow motion’ approximation is usually adopted.
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PART II. ALGEBRAIC PREPARATION OF THE EQUATIONS FOR SOLUTION

8. THE EQUATIONS FOR NON-ZERO PRESSURE GRADIENT

For the case of a non-zero pressure gradient, the following seem to be possible methods of
attack:

(a) Following Howarth, to attempt to find a solution in the form of expansions in £, with
coeflicients which are functions of 7. The equations for these coeflicients will be ordinary
differential equations and it will be found (see§§ 8, 9 below) that, as in the incompressible
case, they can be solved in succession rather than simultaneously, since the equations for the
coefficients of £” only involve the coefficients of &/ (j<(n); it is this feature which makes the
evaluation of solutions by this method practicable. The equations to be solved are in effect fifth
order linear (except for n = 0 when they are non-linear) with three boundary conditions
given at one end of the range and two at the other. Although the accuracy finally required
may be greater than that attainable by the differential analyzer, an exploratory treatment by
this machine might be very valuable to find approximate solutions satisfying the two-point
boundary conditions. Once approximate solutions were found it would probably be com-
paratively easy to improve them by an iterative numerical process (see § 12).

(b) To apply the differential analyzer to equations (6-7) using finite difference in £ and
integrating in 7, following the general method suggested by Hartree & Womersley (1937)
and applied to the equations of heat flow (Copple, Hartree, Porter & Tyson 1938), which
has also been applied to incompressible boundary layer flow.

(¢) To use finite differences in both £ and 7. One example of such a method has recently
been proposed and applied to boundary layer flow by Cowling (1947), and another has been
explored, in connexion with heat conduction in a solid in which a chemical reaction is
taking place at a rate depending on the temperature and with evolution of heat, by Crank
& Nicolson (1946). Such a method applied to equations (6-7) would probably be best
carried out on high-speed automatic computing equipment using electro-magnetic relays
or electronic counting circuits.

Even if one of methods (5) or (¢) were used for the main part of the calculation, it would
probably be found best to use method (a) to start the work, so as to get away from the
singularity at the leading edge of the plate before picking up the integration by methods
(b) or (c). This suggests that results of method (@) are likely to be required in any case, and
the remainder of this paper is concerned with the derivation and solution of the relevant
equations.

Emmons & Brainerd (1942) shows that the inclusion of the variation of viscosity with
temperature has a considerable effect on the calculated values of C;; hence although this
complicates the problem appreciably, it will be taken into account from the beginning.
It will be assumed that ¢ is constant, so that the form (6:15¢) of the energy equation applies
and the subscript 1 will be dropped.

It would be possible to use expansions in powers of § with coefficients which are functions
either of 7* or of 7. In the former case the differential equations for the functions of 7* would
be obtained by substitutionin the equationsin the form (6-7) ; in the latter case the differential
equations for the functions of 7 would be obtained by substitution in the equations in the
form (6-16). At first sight there does not seem much to choose between these two possibilities.
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But trial soon shows that the form of the highest derivative terms in the equations of momen-
tum and energy in the forms (6-7 b, ¢) respectively leads, when series expansions of this kind
are used, to complications which, though they do not appear serious algebraically, do become
serious in numerical work on the resulting equations; and it seems likely that corresponding
difficulties will appear in the other methods suggested for handling these equations by
numerical or mechanical means. On the other hand, the highest order terms in the equations
in the form (6-16), are of the simplest possible form ; the independent variable (6-9) has been
chosen precisely for the purpose of making them so. This introduces a really substantial
simplification into the treatment of these equations by numerical or mechanical process,
and it seems advisable to accept the slight complication of the form of the equation of
continuity and of the lower order terms in the other equations in order to achieve this
simplification of the highest order terms.

Further, the numerical results for zero pressure gradient (see § 19 below) show that 2u*
and r vary very much less with .#? at constant 7 than at constant #*, so that by expressing
results in terms of 5 rather than »* as variable normal to the solid surface, fewer separate
solutions need to be evaluated to give a set covering a given range of .#%. It was hoped that
the same would be true for the case of constant (but non-zero) pressure gradient; and since
in this case the evaluation of a single solution is a major computing operation, means of
minimizing the number of solutions to be evaluated is much more important, but this hope
was not fulfilled.

The further development will be restricted to the case of uniform pressure gradient in the
main stream, that is to say _

Gé)=1, (8-1)

so that, by integration of (6-3) g— = 14y M3E. (8-2)
1

Also it will be assumed that the viscosity depends on the temperature 7 only, and that this

relation is of the form T\ y;
- - 06 2

with § constant. For the pressure variation (8-2), this gives

o= (1 y5E) (1A (8:4)

on using (6-14).
Since equations (6-16) are three simultaneous equations for three dependent variables
it would seem at first sight only necessary to introduce three expansions, for example

2u* = X, (—8)" h, (1), - (85)
oW = X, (—8E)" (2n+1)f,(n), (8:6)
r= Zn(wsg)nrn(”) (87)

Then it follows from (6-164) and (8-6) that

222 5 (~ 81 fi) (:9)
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and stream function ¥ is given by

¥ = nEUNEE,(—89)"f,(n);

but it seems more convenient to introduce at this stage two additional expansions, namely

2‘,’}1‘* Z,(— 88 (1), (89)
and /—ﬁ‘;=2n(—sg>"¢,,(n>, (8:10)

and possibly to eliminate the functions forming the coefficients of these expansions at a later
stage. The use of expansions in (8f), of expansions for 2u* and 2, and of the coefficients
(2n+1) in thelatter, follows the usage of Howarth; for Howarth’s casep,/p = 1,and thereisno

u*
distinction between the variables # and #*, nor between #pu* R pu” , and #*, so that the

P1
functions f, are then the same as Howarth’s f, (or rather, they would be the same if Howarth

had taken a constant pressure gradient in the main stream instead of a constant velocity
gradient), and the functions %, are Howarth’s f, (with the same proviso)

There are five sets of relations between the five sets of functions f,, ,, &,, ¢,, x,- Two sets
of these relations are purely algebraical, the remaining three are in the form of differential
equations.

* *
From the relation 2u* ——:%g';—u— = (1 +,///%r)—2io—u—
1 1
it follows that one of the two sets of algebraic relations is
ho = (1+4A310) Yo, (i)
hy = (14 M310) Xy +-#F71X0s (ii) (8-11)
hy = (L+M3ry) Xo+MF(rixy+72%0), (iid)
and in general b, = (1+M}ry) x,+- A} i 7j Xn—js (8-12)
so that Y, = ( M3 1 _]) / (1++437,). (813)
From (8-8), (8-9) and (8:10) another set of relations is
Jo = PoXos (1)
Ji = d1Xo+boXns (ii) (8:14)
Jz = PaXo+P1 X1+ Poxes (i)
and in general Ju = i B; Xn—j- (8-15)
j=0

Elimination of the functions y between (8:13) and (8-15), or more simply use of (8-5), (8-7)
and (8:10), gives
F= {3 b3 fin| [+, (816)

Only two of the sets of relations (8:13), (8:15) and (8-16) are independent, but all are useful
at different stages of the work.
For the pressure variation (8-2), it follows from (8+4) and (8-7) that

i = (1+AM37o)P {1 — (8E) 5, + (86)? 5, — (8)*s3+...}/ (8:17)
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My .
where 5 = H_%%ro—m, (1) (8-18)
sj = MY(ry—mr;_) [(L+AR1,)  (j=2) (i)
m = §yM3. (8-19)

If (8:17) is expanded and compared with (8:10), the following relations between the
coeflicients in the expansions (8:7) and (8:10) are obtained:

o = (L+-A31o)7, (i)
¢1 = PPosy, (ii)
bo = Bifsn—b(1—) 52, (i) (5:20)
s = Bholss— (1—F) 518, —§(1—F) (2—F) sl}, (V)
and in general ¢, = f, X [coefficient of X" in expansion of (X;s; X7)#]. (8-21)
It is convenient to write this b, = PPo(s,—S,) (8-22)
so that §, involves only functions 7; with j<n.
Then from substitution in (8-16) it follows that
= (b~ U o Ja iy —c, (5-23)
where C, involves only functions of order j<#; in particular
Jo = kol (1 +A310)1, (i)
(8-24)

f;_{h —%{1372—— —piy) [ 1+ (i

Equations (8-23) form one set of differential equations between the five sets of functions
FBus Tps S s Xne The other two sets are obtained by substitution of the series (8+5) to (8-8)
and (8-10) into equations (6:16 b,¢). From equation (6:166),

ho = —Jolos (1)
= —do—Sol—3f1ho+2/g b, (i1) (8-25)
hy = — 1 —folhy—3/1 1y — 8fo by +-2( /1 b +2fghy), - (id)
and in general Bo=—g = S (G0 L+ S 2% fr (8-26)
“~ =
And from equation (6-16¢) ’ !
(/o) ro+3(y—1) (ko) = —Joro5 (1) ]
(1fo) Ay 1) @At £l = —ldo—fori—dhr b 2orts G|
(1)) ry+3(y — 1) {2 by 4 (1) +m(2h ) +m? (ho) %) J
—H{(Boa+81k0) +mohot+ 3111 — 8o 16+ 2(fin+2for), (i)
and in general
(o), i—(y—l){Zm’“Z Bl )
0 Jj=
]_n 1 n—k- n . , n . ,
kzomk Z ¢Jhn -k—j-1"" ZO(2J+1).f}rn~j+OZOZJrjfn—j' (8'28)
= j= = J=
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9. GENERAL STRUCTURE OF THE SET OF EQUATIONS

These equations look elaborate at first sight, but on further examination it seems that
they may not be quite so formidable as they first appear.

- It is convenient to refer to the set of five functions f,, %,, 7,, $,, X,, with any given value
of n, as the ‘nth order functions’. One feature of the set of equations is that the equations
for the nth order functions, that is to say the equations involving the highest derivatives of
these functions in the differential equations, involve only the jth order functions for j<n,
so that the equations for these sets of five functions can be solved successively in the order of
nincreasing ; the equations for different values of 7 do not all have to be solved simultaneously.
Then, in evaluating the solutions of the equations for the nth order functions, the functions
of lower order will be known functions of 7; this will be taken as understood in the following.

Further, with this understanding, the equations for the nth order functions (n>0) are
linear and all of the same general form, namely

, 1—f)2h, )

fi = [t~ ) [ gry-r—c, (3:23)

B = folt - 2ufih, — (2140) f D, (91)

(110) e 4y = 1) Bl = —~fyrs +-20fir,— 20+ 1) o= By (92)

where C,, D,, E, involve only the lower-order functions which will be known as functions
of 7 in the evaluation of the solution of these equations in the order of 7 increasing. The
expressions for C,, D, and E, are

Gy = [oom{ S+ TEE =S (b=t | [0 +tirg, (99
D, = door kS (1) Sy =% 5 (04)
By =y 2 S G k=D T s S )

+ Zl{(-?j F1) S i =21 S} (9-5)
j=
(Note: formula (9-3) for C, applies for n>2; for n = 1 see formula (8-24 ii) above).

The main complication in the calculation of the higher order functions is not in the solution
of the equations but in the evaluation of the functions C,, D, and E,.

The equations for the null-order functions (z = 0) are exceptional in being non-linear.
They are the first equations of each of the sets (8:20), (8:24), (8:25) and (8-27), namely

o = (14-Aino), (8-201)
Jo = hol (143 10)1 7, (8-241)
hy = —foho, (8-251)

(/o) ro+2(y—1) (h)* = —foro- (8-27i)

Vor. 241. A. 4
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Equations (8-241), (8-251) and (8-271) are equations (6:16) for the case of zero pressure
gradient, with the substitutions

u* =hy, 2w=f, r=r,

and with the viscosity variation (8:3). The numerical treatment of these equations is
considered in §12.
It will be seen in §10 that the boundary conditions for the solution of the equations for
the null-order functions are
hy=fo=13=0 at77=01 (9-6)
and hy=2, 71,=0 atﬂ:oo.J

If for shortness we write q = exp ( ——JU Jo d77) , (9-7)

the solutions of (8-251) and (8-271) can be written in terms of ¢ in the following way:

th = h5(0) g = 24/ [ “gan, (9-8)
ho=2[ ady [ qan, (99
. Yo 0
o= =D ol ()2 g7 g2, (010)
ro= 10— 1) olta(0) [ o[ o). (o-11)
For large 5, fy —~2 and f"—2 = o(1/5) and hence
o~ 2n—0). (9-12)
Consequently qg=0(e"),
and from (9-8), (9-9) o = O(e), } (9-13)
7o = O(e=o").

The treatment of the equations for the higher order functions is considered in § 13.7}

t [Note added in proof’]. Dr L. Howarth has pointed out the considerable simplification which occurs in the
equations if § is taken to have the value unity. Then, first, the null-order functions (with 9 as independent
variable) are independent of the Mach number .#; secondly, the expansion (8-21) is much simplified, and
gives just ¢, = ¢gs,, so that S, = 0 for all n; and thirdly, the coefficient of 7, in equation (8-23) is zero, so that,
as for the null-order functions with g = 1, 7, does not occur in the equations for f,, #,. This last is the most
important simplification from the point of view of the practical procedure for the solution of the equations;
it follows from it that the equations for f,, %, can be solved first, and the equations for r, solved later with
Sfus b, then known functions of #; and the values of #,(0) and 7,(0) required to satisfy the conditions at infinity
can be determined separately instead of having to be found simultaneously.

Since the value of 8 for air is not greatly different from unity, Dr Howarth suggests that the general
character of the effect of compressibility on the laminar boundary layer, including the variation of viscosity
with temperature (which is important when there is a retarding pressure gradient, see § 19) would probably
be exhibited by solutions calculated for the simpler equations which apply when § = 1.
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10. BOUNDARY CONDITIONS

Since # = v = 0 everywhere on the solid boundary y == 0, it follows that u* =w =0

for = 0, all §, and hence
h,(0) =£,(0) =0, alla. (10-1)

Also for solutions referring to conditions in which there is no heat flow across the solid
boundary, d7T/dy = 0 everywhere on the solid boundary, and since dp/dy = 0 through the
boundary layer, this implies d(p,/p)/dy = 0 for = 0, all {, whence

7,(0) =0, alln. (10-2)

Equations (8:23), (9-1) and (9-2) for f,, &,, 7, are in effect fifth order, and two further
boundary conditions are necessary to determine the solutions. These express the require-
ments that the velocity and density in the boundary layer should tend asymptotically to the
values in the main stream; since dp/dy = 0 through the boundary layer, this ensures that the
temperature also tends asymptotically to the main stream value. These conditions can be
expressed in two forms. One form is that at each £ the velocity and density should each tend

to some finite asymptotic value as 7 —00, that is not only that %) (c0) =7/(o0) = 0 but that
nh,(n) =0, nri(y)—>0 as p—>o00, alln; (10-3)

the other form is the specification of the limiting values of %, and 7,, which are given by fitting
the variations of the values of velocity and density with £ in the boundary layer to those in
the main stream.

The flow in the main stream is adiabatic potential flow. Since the pressure distribution
is taken to be p/p; = 1+y.43§ (see (8:2)), it follows that the density distribution in the main

stream is given by
Ltttir = (pifp) = (1-+ya3E)1.

On expanding in powers of (8f) and comparing with (8-7) it follows that

7’0<OO) =0, (')
() =4 (i)
r(00) = LE1 ), (i) | (10-4)
(o) = PENEVED gz (i)
or generally J
7,(00) = e/% [coeflicient of (8£)" in expansion {1+ (Ly.#3) (8£)}~1/7]. (10-5)
1

Also if U = U, U*(£) is the velocity in the main stream at &, Bernoulli’s equation gives

Y Loy Y D 1103,

y—1p Cy—1py
9 -Dly
whence (U*)2 =1— W{(ﬁ) —1}. (10-6)
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The most convenient way of finding the expansion of U* in the powers of 8¢ is to differentiate
(10-6) repeatedly with respect to & and then to put £ = 0 in the successive derivatives. Since

plpy = 1+y43}E for the pressure distribution here considered ( ) can be replaced by

)ag

its constant value y.#% in each differentiation. Hence we get in succession

dU* p -1y
R
& \p
d2U* dU* ~[(l/y)+11
v +( dg_) :,//g(pﬁl) , , (10-7)
BU* dU* 2U* p —[(1/y)+21
® —_ 4f L

Now at §{ = 0, U* =1 and p/p, = 1, hence

dU* _ d2U* . BU* L ‘g2 )
(&), =" (), , =1 (g ), =t at—sai sy, ete, (109

and from (8-5)

, 2 (dU*
h(e0) = 20w (@) =—5(T)
L2U* 2 (U
21hy(00 82( dE? )g o 3! hy(c0) :“gg(—dgT)gzoa etc.,

and hence ho(0) = 2, (i)

hy(0) = ¢, (ii)

hy(00) = g (AF—1), (iii) (10-9)

fy(@0) = - ol ) M3 B), et ()

The conditions (10-3) are clearly much simpler than the conditions (10-4) and (10-9),
particularly for the higher values of z. It will be shown that for n7 0 the two forms of the
conditions are equivalent; for but z = 0 this is not the case. For n = 0, f;> 0 for any solution
for which f£;(0) >0, and consequently, from (9-7), (9-8) and (9:10) it follows that the con-
ditions (10-3) are satisfied by any such solution, irrespective of the asymptotic values of
hyand r,. Hence for n = 0itis necessary to take the boundary conditions at infinity in the form

hO(OO) =2, 7'0(00) =0, (10'10)
as quoted in § 8.
Consider, on the other hand, the set of equations for the first-order functions,

, (1—=p) M3l }/ 2, \1-8 YR
fl - {hl— 1_{_%%7.0 7'1 ﬂm}lo (1+='%170) P} (8 2411)
iy = — o —foly— 31 ho+2/5 b, (8-251i)

(1)o) r{+4(y = 1) {2k i+ m(ko) = —2bohe—fori —3fino+2fon.  (8:27iii)
Now 74(00) = 0, ho(00) = 2, fo ~2(n—c); and further /A is 0(¢77*) and 7 is 0(¢77"), whereas

J1is O(n).
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Hence the asymptotic forms of equations (8-251i) and (8-27ii) are
by ~—1—2(n—c) hy+4hy, (10-11)
(1)o) 1] ~—%—2(n—c) r{+4r,. (10-12)

Now if k] -0 in accordance with condition (10-3), it follows from (10-11) that 4, — £,
and similarly from (10-12) that r, .

Hence the condition that %, and r, should each tend to some asymptotic value determines
these values, namely

A A

hy(0) =%, 1(0) =4,

which are just the values (10-81i) and (10-41ii).

It will be seen that this result follows from the presence, in equations (8-251i) and (8-271ii),
of the terms 2f; 4, and 2f; r;, which are special cases of the terms 2nf; %, and 2nf{r, in the
equations for the nth order functions. These terms will be present in the equations for all
the higher order functions, so that the same situation will occur in them. On the other hand,
the coefficients of these terms include a factor z, and they are therefore absent for n = 0,
and the condition that £, r, should tend to asymptotic values no longer determines these
values.

Further if Z is written for (5 —c), it follows from (9-13) that for large 7

d? d
73 (= 1) +2Z 1 (1) — 4l —3) = 0. (1013)

SOCIETY

OF

Now two solutions of the equation

2
(—}"Zg +2Z %—- ont = 0

are (Hartree 1935) exactly, not only asymptotically, a polynomial of degree z in z (in fact
the Hermite polynomial of order » and argument iz) and the n-fold integral of the error
function, with integration constants chosen so that this integral is zero at infinity, which is
of order ¢=2*/Z"*" for large Z. Since &, —% is zero at infinity, it follows that if it is satisfied
(10-13) exactly, it would have this behaviour at infinity, but since terms of order 57
have been omitted in equation (10-13) it follows that 4, is of the same order.

This argument can be extended. It can be shown similarly that 7} and 7, are at most of
order 7#¢~o", where p is finite, whereas f, is at most of order #; hence the only terms in
equations (8-25) remaining finite are those with ¢; as a factor, and these, on re-arranging,
become (starting with (8-251i))

A A

Go(2xh —1) = 0,
200(2x0 2+ x1 1) +81(2xp M —1) = 0,
200 (3x0 713+ 2x1 by -+ X2 Py) 268, (X, 1y +Xohz) +Bo(2x0hy —1) = 0,

etc., so that in succession we have the asymptotic relations

SOCIETY

OF

2% h —1 =0,
200+ X1 1 =0, (10-14)
3Xohs+2x1 by +x2 By = 0,
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etc. Inlike manner equations (8:-27) become
o(2X071 —1ho) = 0,
Po{2(2xa70 1+ Xa71) -+ H(mho— D)} 461 (2x071 — dp) = O,

etc., so that in succession 2%071 +2hy = O,}

(10-15)
2(2xg72+x171) + 2 (mhy—hy) = 0,

etc. Since the asymptotic values of ¢; do not enter into the relations (10-14), (10-15), it is
not necessary to use the expansions (8:20); this is to be expected, since the asymptotic values
of h,, r, depend on the flow in the main stream, which is unaffected by viscosity, whereas
the relations (8-20) depend on the relation between viscosity and temperature.

A third set of relations, however, is necessary before the asymptotic values of 4, , can be
found from (10-15); these are given by (8:13),

Xn = hy— zorjxn—ja (10-16)
Jj=
since 7,(c0) = 0.
The solution of (10-10), (10-14) and (10-15) in succession gives an alternative way of

evaluating 4,(c0), 7,(00) and y,(0).

11. THE CASE #,=0

The case .#, = 0 is worth particular attention, both because of the comparative simplicity
of the equations in this case, and the partial check on the general equations which they give
by comparison with those for incompressible flow, and because the results in this case form
a useful starting point for the solution of the equations for .#%+0 by an iterative process.

For .#, = 0, the equations for the functions 7, (equations (10-4) below) certainly have
finite solutions satisfying the boundary conditions, this justifies the assumption that
{(p,/p) —1}/-#% remain finite for .#; = 0, on which the substitution (6-12) was based, and
shows that, as was mentioned in § 7, the boundary layer flow for a compressible fluid tends
to that for an incompressible fluid as .#; —> 0, so that a comparison of the equations for
M, = 0 with the equations for incompressible flow provide a check on the former.

For .#, = 0, equations (8-:20) show that:

=1, =0 (all 1>0), (11:1)

and hence 7* = 5, so that y-derivatives (indicated here by dashes) are equivalent to 7*-
derivatives (indicated by dashes in incompressible flow). Also there is no distinction between
2u* and 2pu*[p, so that from (8:13) y, = 4, (all n), and from (8:15) f, = y,, so it follows that

Xo=h, =/, (all n). (11-2)
Equations (7-19) become
§ =/l ) ]
1”,:‘—1_<f0f1”+3f1 (;')+2f0,f1,9 (ii) ) (11.3)
2 = —(fofs +3AN +5Ss) + 4/ S5 +2()% (i) ]
0 LA ST TS O S+ S ()
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LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 31
with boundary conditions S2(0) =/£.(0) =0, alln,

Jo(o) =2, fi(0) =1, fi(0) =—d fi(0) =51z -

(11-3i,ii and iv) and subsequent equations are the same as Howarth’s; (11-3iii) and the
boundary conditions at infinity for n> 2 are different because Howarth’s equations and their
solutions refer to the case of uniform velocity gradient in the main stream and not to uniform
pressure gradient.

Equations (7-20) become

(/o) ro+2(r—1) (fo)? = —So70; | | (1)
(1) i+ 1= 1) (RFF7) = —1fi — ark+ 3r) +2fi (i) | (114
(Ua) -t = DA 2 f = — L — farhet Shri -+ 5far) + 4 ro-+ 2f0 (i)
with boundary conditions r(0) =0, alln

ro(oo) =0, 7’1(00) =3 7

n

(00) =0 (n>2).

Equations (11-3) do not involve the functions 7,, which can be evaluated by the solution of
equations (11-4) in succession gffer the solutions of equations (11-3) have been calculated,
instead of simultaneously with them.

The solutions of (11-31,ii) have been given by Howarth; the solution of (11-4i), with

0=

yf 770as dependent variable, has been given by Pohlhausen (F.D. p. 628).
The general form of the equation for 7, is
(1/o) ra-tforu—20fo1, = Ey (11-5)

where E, involves f, as well as lower-order functions, but, for .#, = 0, can be regarded as
known since in this case the equation for f, does not involve 7,. Now f,, /; have no singu-
larities for finite positive #; hence the solutions of the homogeneous equation obtained by
putting £ = 0 in (11-5) have no singularities in this range. A formal solution of (11-5) in
terms of two solutions of the homogeneous equation can be written down by the method of
‘variation of parameters’, and although of little use for the practical evaluation of solutions,
it shows that there is a solution of (11-5) satisfying the required boundary conditions and
finite for all positive 7, as quoted earlier in this section.

12. EVALUATIONS OF THE NULL-ORDER FUNCTIONS

The null-order functions can be evaluated very conveniently by iterative quadrature
using the equations

Jo = ho/ (L 4-M 1) 7, (8-241)
q= CXP(—fofodrz), (9-7)
hy = 2f0qdf7/f:qdv, (9-9)

o= 2or—1) G5(0) [ ([ g2-n) oy (911
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Starting from estimates of the functions %, and 7, (taking the solutions for .#, = 0 if no
better estimates are available), f; is calculated from (8-241) and integrated twice to give

f JSodn; since f, itself is not required at this stage, this two-fold integration is conveniently
0

done without calculating f, by double-summing the second difference of f Jody given in
central difference notation by 0

([ Sodn) = @0 i+ — shod¥i )

From f Jodn, q is obtained from (9-7) and A, from (9-9) after a further integration; then
0

7o 1s evaluated from (9-11).

The iterative process can be illustrated by a block diagram, figure 6, where the ‘blocks’
represent the various quantities calculated. This shows that the iterative process can be
regarded as having two ‘loops’, one, including the letter (4) in the figure, giving %, and the
other, including the letter (B), giving 7,. The iteration process (A4) for &, if 7, is regarded as
given, is much simpler than that for 7, and for small values of .#} the result of a complete
iteration, once round each loop, is much more sensitive to the estimate of 4, than to that of
7, (this is to be expected since for #7 = 0, 4, is unaffected by 7,), and it may be then worth
making two circuits of the iteration loop for %, for each estimate of 7.

ho 7 fF=—/ E‘&y 7 S=qo_-ﬂ)gz“fdy
(B) ‘
o h,
Lady|  |bogdy o |
@ ) oo fody 77| |or*
q <, dy=-logeq]

(2-0)|o £y ' 7 '

Ficure 6. Schematic block diagram of iterative process for 7, 7.

The iteration is reasonably convergent, at any rate for not too large values of .#%; for
o= 0715, f =$&, M4} =10 the improvement in the solution is by about a factor 3 per
iteration.

Further, since 7, and A, for given 7, vary little with .#,, it follows that once solutions
have been obtained for .#% = 0 and one non-zero value, linear interpolation in .#? should
give a good first estimate from which to begin the iterative process for any other value
of A,.

The small variation of r, and %, with .#% for constant is an important advantage of 7
over 5* as independent variable.
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LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 33

13. EVALUATION OF SOLUTIONS OF THE EQUATIONS
FOR THE HIGHER-ORDER FUNCTIONS

There are several possible methods by which the evaluation of solutions of the equations
(8-23), (9-1), (9-2) for the higher-order functions, with the two-point boundary conditions
at 7 = 0 and 7 = co, might be attempted.

Since these equations are linear, one possible method is to evaluate a particular integral
and two complementary functions, all satisfying the conditions at # = 0, and to form such
a linear combination as to fit the conditions at # = co. In numerical work, such a treatment
of linear equations with two-point boundary conditions is often more a formal possibility
than a practically useful method, but in the present case it appears practicable for numerical
work, at least for the smaller values of the order n. For larger values of # the complementary
functions may increase too rapidly for large # for this process to be convenient for numerical
work.

For the particular integral, the values of %,(0) and 7,(0) are undetermined by the condi-
tions at 7 = 0 and are free to be chosen according to the best available estimates of the values
required to obtain a solution satisfying the conditions at # = co. It would probably be
desirable to evaluate some rough trial solutions first with trial values of #;,(0) and 7,(0) in
order to get an idea of the values required, before evaluating an accurate particular integral
from which the final solution would be determined by superposition of the complementary
functions. This would avoid the situation, which otherwise would be liable to arise, that
the final solution for large # was determined as the small difference of a large particular
integral and a large contribution from the complementary function. It would probably
be best to evaluate the complementary functions, one for #;,(0) = 1, 7,(0) = 0 and the other
for £,(0) =0, 7,(0) = 1.

Various forms of iterative treatment of equations (8:23), (9-1) and (9-2) can be devised.
They may be more useful in improving approximate solutions already obtained by other
methods, but it is possible that an interative method may be useful even in the first rough
determination of a solution satisfying the two-point boundary conditions. One iterative
method, suggested by the possibility of using the differential analyzer for the solution of
these equations, has been found practicable, if rather long, for numerical work. The general
plan of this method is somewhat similar to that considered for the null-order equations,
though the integrations cannot be reduced to quadratures.

Simultaneous solution of equations (8-23), (9-1) and (9-2) is certainly beyond the capacity
of an 8-integrator differential analyzer, which is the largest at present available in Britain.
On the other hand, equations (9-1) and (9-2) are of the same form, and could be handled
alternately with only minor changes of machine set-up; the evaluation of f, from solutions of
these equations is a matter of quadrature which can be done numerically. This suggests
the following procedure. First estimate %, and r,. Adopting these estimates, evaluate f,
from (8-23) and integrate, giving an approximation to f,. Then with this f, solve equation
(8-1) for 4,, and with the %, derived from this solution and with the same f,, solve (9-2)
for r,. Repeat the whole process with the %, and 7, so obtained.

With f, regarded as given, the terms (2rn+1) f, /g in (9-1) can be treated as a contribution
to the inhomogeneous term in this equation. The evaluation of a solution with the specified

Vor. 241. A. 5
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boundary values of 4,(0) and A4,(c0) involves the evaluation of a particular integral and a
complementary function, the latter being a solution of

by Sl —2nfg by, = 0, (13-1)

with £,(0) = 0; this only involves the functions f,, f; and the value of 7, so the same com-
plementary function applies to all stages of the iterative process. The final solution is
obtained by adding to the particular integral such a multiple of the complementary function
that the linear combination satisfies the condition at infinity.

Similarly, with %, obtained from the solution of (9-1), and f, also regarded as given, the
terms (2n+41) f, k), and §(y—1) hyk,, in equation (9-2) can be treated as contributions to the
inhomogeneous term in this equation, and a similar treatment applied. The equation for
the complementary function in this treatment is

(1) 74+ fors—2nfyr, — 0, (13:2)
with 7, (0) = 0. '

This method has been tried in a numerical treatment of the equations for n = 1, #% = 10,
and has been found to converge satisfactorily; the improvement is by a factor of the order
3 per iteration, as with the method suggested in § 12 for the null-order functions.

For numerical integration, it is very convenient to transform a second-order differential
equation into such a form that the first derivative of the dependent variable is absent. In
the case of equation (9-1) this can be done by using

e = {h—h(c0)} exp5 [ fodn) = (hy—y(c0)}igh (13:3)

as dependent variable; the equation then becomes

CE = (e DS+ LR — D2k (o) + e ARYE, (139

with boundary conditions /¥ (0) = —#h,(c0), A¥(c0) = 0.

Provided o>}, the inhomogeneous term in this equation tends to zero as #—co0. The
integration process for the equation in this form is simple, but the whole process of obtaining
a solution satisfying the boundary condition is not quite straightforward, because of the
very rapid increase of the complementary function for large 7 (it is O(y?"e¥"")), so that dif-
ferent particular integrals diverge very rapidly from one another. This makes it impractic-
able to evaluate just a complementary function and a single-particular integral (unless the
choice of initial value of di* [dy has been exceptionally fortunate). It is necessary to evaluate
one particular integral out to some value, say 7,, of 7, estimate from the behaviour of this
solution what multiple of the complementary function has to be added to get the required
solution, and start the evaluation of another particular integral from some value 7, less
than 7,, and perhaps repeat this process two or three times. But the simplification introduced
in the integration procedure by the absence of the first derivative more than compensates
for this additional complication.

Similarly, for the equation for ,, the use of

7t = (o)} expllo| fod| = r,—r,(0)}/g, (13:5)


http://rsta.royalsocietypublishing.org/

A A

j A Y

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 35
eliminates the first derivative, and gives

1 dzr* ’ ’ ! 'L
o apt = @t fo il — By —2fgr, () + (2n+ D faro+2(r—1) R} gt (13:6)
with boundary conditions dr¥ /dy = 0 at y = 0, 7¥ = 0 at § = 00. The treatment of this equa-
tion is similar to that of equation (13-4).
A block diagram of this iterative process, using the equations in the form (13-4), (13-6),
is shown in figure 7.

L
hn
q 1/2 hﬂ A’ B’ Cn’ n “« q 1/20-
/ a ) o
AN 7 {7
] ! | 1/ 1 t
) ﬁ):f(;, > P.Zfi)r fn RI;E(E)I‘ f;);fo,
n
Ltin , , 1 Lt in
equation ] (2n+))f g @n)fnto equation -
for hy for 7*
i R ]
Dn,q_l/z hé 7'0/ En’q—%o-

Ficure 7. Schematic block diagram of iterative process for #,, r, (n>0).
Lt. =inhomogeneous term, P.i. =particular integral, C.f. =complementary function.

14. MEANS OF GARRYING OUT THE EVALUATION OF SOLUTIONS OF THE EQUATIONS
FOR THE NULL-ORDER AND HIGHER-ORDER FUNCTIONS

Any method of evaluating solutions of the equations for several orders of functions, even
for a single value of .#%, will involve a substantial amount of computing work.

Since the null-order functions occur as coefficients in the equations for all higher-order
functions, and for n>4 they do so multiplied by factors 10 or greater, and since also in the
inhomogeneous terms in these equations the lower-order functions also occur multiplied
by similar factors, it seems desirable to evaluate certainly the null-order functions and a few
of the low-order functions (perhaps n =1,2,3) to greater accuracy than is obtainable
with the differential analyzer, though this instrument may be valuable in obtaining first
approximations to the solutions, and particularly in locating the neighbourhood of the
values of /,(0), r,(0) to give solutions satisfying the boundary conditions at infinity.

The situation is somewhat different for the null-order functions on the one hand and for
the functions of order n>1 on the other; first, because of the different character of the
equationsin these two cases, non-linear for n = 0 but linear for n>1, and secondly, and more
important, because of the small variation of the null-order function with .#} (see §17)

5-2
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which makes it easy to estimate good approximations from which to start an iterative calcula-
tion, and the large variation (and as yet hardly known behaviour) of the higher-order
functions with .#3.

Some solutions of the equations for the null-order functions were evaluated by the
iterative method of §12. It was found that this method converged satisfactorily, at least
for values of .#% up to about 12, and that it was quite easy to use an accuracy adequate to
give 4 figures in the results. .

Subsequently, an opportunity arose of using the ENIAC, an electronic calculating machine
using the principle of counting electrical pulses by means of electronic counting circuits,
for this work and of exploring the possibilities of the application of this machine to the
evaluation of the higher-order functions which would be much more laborious to calculate
by normal computing methods. This work forms the subject of the following sections.

PART III. NUMERICAL SOLUTION OF THE EQUATIONS

15. Tue ENIAC

The ENIAC is a large calculating machine, which has been developed at the Moore
School of Electrical Engineering of the University of Pennsylvania, Philadelphia, U.S.A.,
for the Ballistics Research Laboratory at Aberdeen Proving Gound, Aberdeen, Maryland.
It was devised by Dr J. P. Eckert and Dr J. W. Mauchly and was developed primarily for
application to the step-by-step numerical integration of the equations of external ballistics,
but its organization is flexible enough for it to be used for many other extended numerical
calculations. An account of it has been published elsewhere (Goldstine H. H. and A. 1946;
Hartree 1946), and only a briefaccount of its general construction will be given here to explain
the references in §§16, 17 to its application to the present problem.

It is essentially an automatic, high-speed, multi-register calculating machine, with
facilities for addition, multiplication, division, and extraction of a square root, for accepting
data from and furnishing results to the outside world, and for controlling automatically the
sequence of such operations. It consists of a number of units which can be interconnected
in different ways so that the whole assembly of units carries out different sequences of
calculations. These interconnexions can be carried out through two sets of lines, one of which
(“digit lines”) transfers numerical information in the form of groups of pulses from one unit
to another and the other (‘program lines’) transfers single pulses (‘program pulses’)
which control the sequence of operations of the various units. The units are also permanently
connected through a set of lines to a pulse generator which transmits a standard pattern of
pulses on these lines every 200 usec. ; this, being the time required for an addition, is called
an ‘addition time’ and is the natural unit of time in which to assess the time taken by other
operations. Individual pulses in a numerical group are spaces at 10 gsec. interval.

The main units of the machine are 20 ‘accumulators’ each of which is both an adding
unit and a register and has a capacity of 10 figures with a sign indication. Subtraction is
carried out by addition of the complement, multiplication by small integers is carried out
by repeated addition. Multiplication in general is carried out by a high-speed multiplying
unit which gives results considerably more quickly than they would be obtained by continued
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addition. There are three function tables, in each of which 104 values of any function required
in the computation can be preset by hand-operated switches. There is a ‘constant trans-
mitter’ which can store on relay registers eight numbers read from a punched card by a card
reader, and a card punch by which results of the computation can be punched so as to form
a permanent record. A multiplication takes a time depending on the number of digits in the
multiplier, but not longer than 14 addition times or 2-8 msec. ; feeding and reading a punched
card and punching results on a card take about half a second each, or some thousands of
addition times. Since these are comparatively slow processes, it is desirable to arrange the
work so as to avoid extensive use of them, if possible.

A unit is normally quiescent. An instruction to operate consists of a pulse on one of the
program lines to which it is connected, and what the unit does when stimulated by such a
pulse is controlled by the positions of switches which are set by hand before the computation
is started ; the setting of these switches and the way the units are connected to the digit lines
and program lines form the ‘set-up’ of the machine for any particular calculation. In any
operation at least two units are concerned, one or more to transmit and one or more to
receive; on completion of an operation, one of the units concerned transmits a pulse to a
program line, and this then stimulates the units involved in the next operation of the
computing sequence.

The card reader and card punch are the units by which the machine respectively obtains
numerical information from, and supplies results to, the outside world. Information about
the computing sequences involved in the problem to be handled is furnished by the inter-
connexions set up between the different units.

A most important unit in the organization of a computation as a whole is that called the
‘master programmer’, by means of which a computing sequence may be repeated, or changed
automatically either at pre-determined stages of the work or at stages determined by one
or more criteria evaluated in the course of the computation itself. This unit operates by
switching program pulses from one line to another. It consists of ten separate six-position
electronic switches called ‘steppers’ with each of which a counter can be associated. Each
stepper has four input channels, of which three are involved in the present work, namely
‘normal’, ‘stepper direct’ and ‘stepper clear’ inputs; it also has one output channel for
each switch position. A pulse input on the ‘normal input’ channel is counted by the counter
and gives rise to an output pulse on a channel corresponding to the switch position, so that
by connecting two or more of these output channels to different program lines from which
different computing sequences are initiated, selection between these sequences is effected
by control of the switch position of the stepper. Repetition of a computing sequence is
effected by closing the ring of computing operations through a stepper; so long as this
remains in the same switch position, the sequence will be repeated, but this repetition is
broken if the stepper moves to another position.

A stepper can be stepped from one position to another in two ways, either by the receipt
of a specified number of pulses applied to its normal input, this number being fixed by the
settings of a group of switches which are set by hand before the computation is started, or
by a pulse applied to the ‘stepper direct’ input; the latter does not give rise to the emission
of a program pulse. The first method is used when it is desired to change the computing
sequence after a pre-determined number of repetitions, the second when it is required to
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change it according to some criterion evaluated in the course of the computation. This
criterion can usually be arranged to be that the sign of some number should be negative;
then when this sign is positive, no pulse is emitted on the line connected to the stepper direct
input, and the position of the stepper remains unchanged; but when the sign is negative,
a pulse is emitted on this line, and the stepper moves to its next position. A stepper can be
cleared back to its first position in two ways, either after moving through any specified
number of other positions, or by a pulse applied to the ‘stepper clear’ input.

The number of steppers available, and the possibility of interconnexions between them,
impart a very considerable degree of flexibility to the ENIAGC in its application to intricate
computations.

A simple example of the use of the master programmer is provided by its use in the
evaluation of the — (})th power of a number, a process involved in the evaluation of solutions
of the null-order functions for the value § = § adopted; a similar process would apply for
any integral value of 1/(1—/). This will be considered in some detail as an illustration of
the ideas used in applying the master programmer to the organization of the whole
calculation.

The notation used for connexions of a stepper is shown in figure 8; the three circles
labelled Sd, n, Sc represent the stepper direct, normal, and stepper clear input terminals;
each rectangle such as PQRS represents a single switch position of the stepper, the vertical
line below it represents the program line to which the output from this switch position is
connected, and the number N in the rectangle gives the number of pulses on the normal input
channel after which the stepper steps to its next switch position. Each stepper has a reference
letter (4 in figure 8), and the number (zin figure 8) after it indicates the number of operative
switch positions after which the stepper clears back to its first position.

stepper A (n)

0 Sdip Q
0 n| N Ny N3
0 SciS R

Ficure 8. Diagrammatic representation of stepper.

| The calculation of the — (§)th power of a quantity z is done by use of the iteration formula
fper — b5, {10218, (15:1)

and the ninth power required in the evaluation of this formula is obtained by repeatéd
cubing: X0 = {(x,)%. (15-2)

With certain restrictions on %, x, = z~%, and further thisiteration formula is ‘second-order’,
that is, at each iteration the error (if small) is squared, so that the number of correct figures
is doubled. The criterion for an adequate approximation to z™+ is taken to be

| x,—x,_1 | <e. (15-3)

The complete master-programmer set-up, shown diagrammatically in figure 9, involves:
two steppers, one (4) to control the repetition of the cubing process, and the other (B) to
control the repetition of the iteration for the ninth root itself. The program lines are
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numbered 1, 2, ..., and the directions in which programme pulses are transmitted are
indicated by arrows. The blocks labelled I, II, ..., represent diagrammatically various
sequences of computing operations} initiated by programme pulses input into the units
involved in the first operation of each sequence.

1 0 S
I 0n 2 1
0 _Sc
12 13
i 7
I oI
h 4
E_ stepper B (2),(no counter)
210 sd
4
3 0n
0 Se

v Y
N

Ficure 9. Master-programmer connexion for iteration for — (3)th power.
For explanation of symbols I to V see text.

In specifying these computing sequences, K, L, M, ... will be used to indicate different
accumulators and £, /, m, ... the numbers registered by them; different contents of an
accumulator which may be registered at different times will be distinguished by suffixes
(but the numerical order of the suffixes does not necessarily indicate the time-sequence of
the contents of an accumulator). These sequences are as follows:

(I) Transfer z to accumulator K; obtain a first estimate x, to z7%, and transfer to accumu-
lators L, M; i.e. make k, =z, [, = m; = x,. When completed, emit a pulse on program
line 1.

(IT) Ifl, is the content of accumulator L, form (/,)3; clear accumulator L and transfer
({,)3 to it, i.e. make /3 = (/,)3. When completed, emit a pulse on program line 1.

(III) Ifk,!,, m,are contents of accumulators K, L, M, form m,(10—£l,)/9; clear accumu-
lator L and transfer this quantity to it, i.e. make

Iy = Lmy(10—L,). (15-4)

Also form (l;—m,)%—e?; if this is negative, and not otherwise, emit a pulse on program
line 7. When completed, and after the time at which the pulse on line 7, if any, would be
emitted, emit a pulse on program line 4.

(IV) Transfer /5 to accumulator M, holding it in accumulator L, i.e. make m, = [;.
When completed, emit a pulse on program line 1.

(V) Subsequent computation when & = z=% has been determined.

T Note that in figure 9 the blocks represent neither quantities involved in the computation as in
figures 6 and 7, nor components of the machine, but processes.
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The way in which x, is obtained will depend on the rest of the calculation of which this
evaluation of z=# forms part. As a result of the sequence of operations I, the contents of the

three accumulators involved are
k=2z, l=m=x, (15-5)

The pulse emitted on program line 1 on completion of this sequence goes to the normal
input of stepper 4, and this, in its first position, emits a pulse on program line 2; the
counter associated with it registers 1 pulse received on the normal input. The pulse emitted
on program line 2 initiates the computing sequence II, which replaces the content of
accumulator L by its cube. Hence on completion of this sequence, the contents of the

accumulators are
k=z, [l=x} m=x,.

The pulse emitted on program line 1 at the completion of this sequence goes to the normal
input of stepper A; this, being still in its first position, emits a pulse on program line 2
and, being set to step after receiving two pulses on its normal input in its first position
(indicated by the number 2 in the first position of stepper 4 in figure 9) it steps to its second
position. The pulse emitted on program line 2 results in the repetition of the sequence 11,

giving finally the results b=z, [=x), m=x,

and the emission of a pulse on program line 1.

This pulse goes to the normal input of stepper 4, and this, being now in its second position,
emits a pulse on program line 3; and further, being set to step after one pulse received on
its normal input in its second position, and to clear to its first position on stepping from its
second position (indicated by the number 2 in A(2)), it then clears back so as to be ready to
initiate the cubing process again in the next iteration. The pulse on program line 3
initiates the computing sequence III, as a result of which, first, the content of accumulator
L becomes x,(10—zx3)/9 which is x, according to the iteration formula (14-1), i.c.

k=z, l=ux, m=x,,

secondly, the sign of (x; —x;)%2—¢? is determined. If this sign is negative, it means that the
criterion (14-3) is satisfied, ; is already an adequate approximation to z7%, and the sub-
sequent calculation for which this value of z7% is required can be undertaken; in this case
a pulse on program line 7 to the stepper direct input of stepper B steps it to its second
position, and the pulse on program line 4 subsequently emitted and applied to the normal
input of stepper B results in the emission of a pulse on program line 8. This both initiates
the computing sequence V for the subsequent calculation and clears stepper B back to its
first position through its stepper clear input; this is necessary since, in the set-up indicated
in figure 9, no counter is associated with stepper B.

If on the other hand the sign of (x, —x,)2—¢? is positive no pulse is applied to the stepper
direct input of stepper B, and this stepper remains in its first position, so that the pulse on
program line 4 results in the emission of a pulse on program line 5. This initiates the
sequence IV, which consists simply in the replacement of the content of accumulator M

by that of L, which gives
k=2z, l=m=x,.
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This is just the situation (15-5) with x, replaced by x,, and the pulse emitted on program
line 1, going to stepper 4, now cleared back to its first position and with its counter at zero,
will repeat the whole process, and this repetition will continue until the criterion (15-3)
is satisfied, when the operation of stepper B through its stepper direct input will break this
repetition and initiate the computing sequence V for the subsequent calculations.

This is only one of several possible ways of evaluating z7%. In the set-up for integrating
the null-order equations, a somewhat different method was actually used, but it does not
provide such a good illustration of the use of the master programmer. In this case x, was
taken from a function table, and was known to be good to 1 in 500; then two iterations were
certainly good enough for the use to be made of the value of z7% in the subsequent calcula-
tions. Stepper B then had a counter associated with it, and was set to step from its first
position after 2 normal input pulses, and to clear back from its second position after one
input pulse (i.e. n = 2, N; = 2, N, = 1 in the notation of figure 8), and the criterion (15-3)
was not used.

16. AppLICATION OF THE ENIAC TO THE NULL-ORDER EQUATIONS

There are two main ways of trying to evaluate a solution of the non-linear null-order
equations (8-24i), (8-251) and (8-:271) with the two-point boundary conditions (9-6). One
is to use an iterative method such as that of § 12; the other is to evaluate solutions with
estimated values of 4'(0), 7(0), and adjust these by trial until a solution satisfying the
conditions at infinity has been found.

The iterative method would involve keeping a record of f, for the nth iteration to use as
input for the (n+1)th iteration, and probably of two or three other functions (such as

q,f qdy) as well; if 120 values of each were required (say covering the range 7 = 0 to 6 at
0

intervals of 0-05), this would require a memory capacity for several hundred numbers in
the course of each iteration, quite apart from the memory capacity required for inter-
mediate results needed during the calculation of a single interval of the iteration. With a
machine with adequate memory capacity into which numbers could be recorded and from
which they could be read in times of the order of a few addition times, such a method would
probably be the best, but with the ENIAGC, with its immediately accessible memory limited
to the twenty accumulators, such an iterative method would involve considerable use of
punched cards, a deck of cards, or several decks, being punched, then transferred from card
punch to card reader, then read during a subsequent stage of the calculation. The punching
and reading of cards are very slow operations compared with the other operations of the
ENIAC, and moreover the need for an operator to transfer the decks of cards from the
punch to the reader breaks the automatic operation which is such an important feature of
large computing machines such as the ENIAC.

A scheme for using this machine in this way could certainly be developed, but it seemed
that a more effective approach would be made by evaluating a set of solutions with trial
values of 7(0), 7,(0), and such a method was adopted.

Even if the trial values of /;(0) and r,(0) are incorrect, %, and 7, evaluated by outward
integration of equations (8:25i) and (8-271) will tend to some constant values, and it was
estimated from the preliminary work with the iterative method that to 6-figure accuracy the

Vor. 241. A. 6
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asymptotic values would be reached by # = 5. Hence the conditions at infinity were replaced
by the conditions: h5) =2, 7(5) = 0, (16-1)

and integration was carried out over the range 7 = 0 to 5 only except in one case when it
was carried to 5 = 8. ,

To limit demands on memory capacity it is convenient in step-by-step numerical integra-
tion to use a simple integration formula, not involving information about the integrand
outside the interval through which the integration is being carried; and hence, to limit the
aggregate error due to the approximations of the integration formula (sometimes called
‘truncation errors’), it is necessary to use a small interval of integration. With a machine of
the high computing speed of the ENIAC, this is not a serious drawback. With the computing
schedule used, which will be explained later, the machine evaluated solutions at the rate
of about 8 intervals a second, so that with intervals of dy = 0-02, taking 250 to cover the
range 77 = 0 to 5, evaluation of a trial solution took about half a minute.

In a trial solution, only one card was punched, at the end of the solution, with the values of

1y(0), 7(0), h(5), 7(5). (16-2)

Five solutions with (4'(0),7(0)) = (a,b); (a4-a,b); (a,b+f) then give approximate varia-
tions of 4(5), r(5) with the estimated values of £'(0), 7(0) ; three solutions would have been
enough for this purpose but five were run to provide a check (the additional two only took
a minute of machine time). From these variations, approximate values of 44'(0), 4r(0)
required to give specified values 4k(5), 4r(5) could be calculated, and supplied to the
machine through the card reader. With this information it could then use the values of
h(5) and 7(5), obtained from one solution with trial values of #(0) and 7(0), to interpolate
better values of 2'(0) and r(0), and so, by alternatively evaluating a solution with trial values
of #'(0) and 7(0) and using the results to estimate better values, to arrive automatically at
a solution satisfying the two-point boundary conditions to any required accuracy within its
capacity. After each interpolation of values of 2’ (0) and r(0) for the next solution, the quantity

[105(A(5) —2)]+[1077(5)]*—5, (16-3)

was evaluated and its sign used as a criterion as to whether the next solution was going to fit
the conditions at 7 = 5 well enough to be regarded as the final one. If this sign was negative,

then h(5)—2<,/6x 1076, #(5) <, /5% 1077,

for the trial solution just completed, and with the better values of 4'(0), 7(0) just evaluated,
the next solution would certainly be better than this and should not depart from the con-
ditions (16-1) by more than 1-1076 in either 4(5) or 107(5). This was regarded as adequate,
and the negative sign of (16-3) was used to operate steppers on the master programmer with
connexions so arranged that in the next and final solution the machine punched a card,
giving &', h, v', r, ' and f, for each interval of the integration, instead of one card at the end
of the integration only. '

The switching of the computing sequence from step-by-step integration to selection of
new initial conditions, of this selection by reading a card or by interpolation from the results
of the previous solution, and of the punching from taking place at # = 5 only to taking place
at each step of the integration, was all set up by connexions to and from the master
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programmer, and carried out automatically in the operation of the machine, so that once
the first estimate of (4'(0),7(0)) and the values of
AR (0)  AR'(0)  Ar(0)  A4r(0)
Ar(5) > Ar(5)°  Akh(5)’ Ar(5)
had been supplied to the machine by means of a card, the whole of the rest of the calculation,
involving the simultaneous determination of the two independent parameters 4'(0), 7(0)
so as to satisfy the two conditions at infinity, and the evaluation and tabulation of the
corresponding solution was carried out without the further attention of an operator. The
evaluation of a single trial solution took about 4 min. as already mentioned ; the evaluation
of the final solution, involving punching a card for every interval of the integration, took
about 24 min. The total time depended on how many trial solutions had to be made, but
was about 4 min. for each value of .#%.
The full procedure outlined above after (16-2) was carried out for .#% = 10 only. For the
Ah(5)  Ar(5) Ar(5)
A (0)° 47 (0) 2™ 4r(0)

for each .#% as for .#} = 10, and ArE 0; was taken as proportional to .#% (it is certainly 0 for

#% = 0), and on this basis the quantities (15-4) were evaluated for .#} = 0 and 20 and inter-
polated linearly in .#? for other values. This is certainly not accurate, but even if slightly
incorrect values of the quantities (16-4) are used the only result is that a few more trial
solutions have to be made before the criterion given by the sign of (16-3) is satisfied, and even
if six trials have to be made instead of two, this only adds 2 min. to the total time of obtaining
a final solution, whereas evaluating the quantities (16-4) from three (or five) preliminary
solutions for each value of .#%, and punching and verifying a card for supplying these data
to the machine would take longer than this, and the alternative process of working out an
addition to the machine set-up to evaluate the quantities (16-4) from such a set of solutions
would take longer than the aggregate time taken by the few additional solutions needed on
account of the use of inaccurate values of the quantities (16-4). So the apparently crude use
of approximate values of the quantities (16-4) is in fact the most efficient. This, of course,
is a result of the high computing speed of the ENIAC and the short time which it takes to
evaluate a single trial solution. '

An example of the results of this process is shown in table 1. The first two columns give
the successive estimates of /3(0) and 7,(0), the second two the resulting values of #y(5)
and r4(0).

(16:4)

other values of .#? it was shortened as follows: were taken the same

TABLE 1. EXAMPLE OF SUCCESSIVE APPROXIMATIONS TO /(0), 7(0). #3=2

initial values final values
2h4(0) 2r,(0) ho(5) 21,(5)
first trial 260100000 0-33745000 2:00043562 —0:00018755
second trial 2:60013708 0-33749239 2-00000212 +0-00000108
third trial 260013353 0-33749054 2-00000009 —0-00000022
final solution 2:60013323 0:33749072 2:00000001 —0-00000006

The master-programmer set-up for this overall control of the computations is shown in
figure 10. In view of the full discussion of the example in § 14, it is hoped that this more

complex set-up will be able to be followed with only a brief explanation.
6-2
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Stepper C controls the selection of initial conditions. In the full procedure outlined after
(16-2), the switch controlling the number of repeats in the first switch position is set to 5,
and the output connexion from the second switch position is broken at X, so that after
completion of the fifth integration, the program pulse on program line 1, input into
stepper C in its second position, results in no program pulse being output to any unit of

Y stepper C(2)
0 Sd
N 5(a)
AR
2 3
Bl
4 4
stepper D (2)
4|0 52
0 n| 250 1
0 Se
{6 1z
o
8
'-—5- stepper £ (2), no counter >
8 Sd
§lo s¢
¥4 Y___7
card
punch
Y9
LS— stepper ¥ (2), no counter
g Sd
n
910 8¢
A J1 74

Ficure 10. Master-programmer set-up for control of computation of null-order functions. Com-
puting sequences:
(I) (a) Clear all accumulators. Feed card and read H(0), r(0) from card or
(b) Clear all accumulators. Feed card and read H(0), r(0), also
AH(0)  Ar(0)  AH(0)  Ar(0)
Ah(5)>  Ah(5)’  Ar(5)° Ar(5)"
When completed, emit a pulse on program line 4. [H = f;dy; see (17-1) below.]

(II) Interpolate for new initial conditions. Evaluate (15-3) and if the sign is negative, and not
otherwise, emit a pulse on program line 5. When completed, emit a pulse on program line 4.

(III) Computing sequence for one interval of the integration.

the machine, which then stops. In this case each of the five cards to be read contains values
of #'(0) and r(0) only. When the values of the quantities (16-4) are available, the card to
be read contains these quantities as well as £'(0) and r(0), and the repeat switch is set to 1,
so that after one integration with these values of 4'(0) and r(0), a program pulse on line 1
results in the interpolation procedure for values of 4'(0) and r(0) for the next solution,
instead of these being taken from a card.

Stepper D controls the number of integration intervals evaluated in a trial solution before
the values of the quantities (16-2) are punched. Steppers E and F are concerned with the
control of the punch, results (16-2) only being punched until the criterion given by the sign
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of (16-4) is satisfied, after which the punching of results is to be part of the sequence of
operations for each interval of integration. The punch has only one input terminal and one
output terminal for program pulses, and two steppers have to be used in conjunction
with it, one for switching the punch into the computing procedure for an interval of the
integration, and the other for controlling the operation resulting from the output program
pulse from the punch.

17. THE COMPUTING PROCEDURE FOR A SINGLE INTERVAL OF THE INTEGRATION

As already stated, to limit demands on memory capacity it is advisable, in using the ENTAC
for numerical integration of differential equations, to use an integration formula which
does not involve reference to the behaviour of the integrands outside the interval through
which the integration is being carried. In general, in order to obtain such a formula with
errors of higher order than the second in the interval length d7, it is necessary either to
differentiate the equations in order to have values for some higher derivatives to use in a
Taylor series from the beginning of the interval, or to use some method involving either
estimation or successive approximation for some quantity at the end of the interval.

But in the present case the form of the equations is such that results correct to second order
in dn can be obtained without any of these processes, if the equations are taken in the right
order. The features of the equations which make this possible are: ‘

(i) The equation (8-24i) giving fj involves %, and r, only,
(ii) The equation (8-251) giving /j is linear in /4; and does not involve 7,

(iii) The equation (8-271) giving 7y is linear in 7}.

In the following discussion of the integration formulae, the suffixes 0 indicating the null-
order of the functions concerned will be omitted as no confusion can arise; suffixes (0), (1)
in brackets will be used to denote quantities at the beginning and end of an interval of the
integration. Also A and R will be used for the reduced derivatives.

H=hydy, R=rydy (17-1)
and it is convenient also to write F=1%fon. (17-2)

It will be seen later that 4j and 7; are never evaluated, so that the quantities known at the
beginning of an interval are

Jo» Fop Hesy koyy Rey 70 (17-3)

which are the corresponding quantities with suffix (1) for the previous interval.
For a single integration the two main formulae with third-order errors are

2y~ Z0) = Z(0)0n +32(0y(0n) %+ O ()3 (17-4)
and z4y— 20 = $320) T 2(y} () + O(dy)>. (17-5)

Since &y and r, are given by second-order equations, (17-4) can be used to give A and 7,

correct to O(dp)? by putting z = k, 7, and substituting for 4, 7; in the (d7)2 term from
(8-251), (8-271) respectively. This gives, with errors O(dy)3,
hoy =l = {1 —F} H (17-6)

and T~ = {1 —0Fg} Ro—30(y—1) {Hg}? (17-7)
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From A,y and 7, f;, can be calculated from (8:241) and so f;, from (17-5), with z = f; or
in terms of Foo—Fo = (101){fip i} (178
Putting z = H in (17-5) and substituting for /j gives

Hyy—Hg = FyHy—Fo Ho

1—FKy
1+ Ky

correct to O(dy)3 (giving & correct to O(dy)?), and similarly

or | Hy = Hy) (17-9)

R — 1 —‘0'}7(0) g Y 1
(1) — 1_!_0.];21) (0)—1+0E1) 9

to the same order in (d7).

- When H;, and R, have been found from (17-9) and (17-10) it would be possible to re-

calculate 4y and 7(;y from the formulae derived from (16-5), namely

by —hoy = 5(Hy+Hg),)
T~ T = (R +Rp)-

These have third-order errors as (17-6), (17-7) have, but the magnitude of the third-order
errors of (17-11) are half those of (17-5), (17-6), and it might be as well to use (17-11) to
reduce the accumulated second-order error, although the values of 4, 7(;), calculated from
(17-6), (17-7) would be adequate for evaluating fy), and similarly in the other formulae.
The O(dy)? errors can, if appreciable, be estimated by Richardson’s (1927) process of
¢ h*-extrapolation’. Some results are given in § 19.

The computing sequence used for an interval of integration on the ENIAGC was based
on formulae (17-6) to (17-10). The evaluation of (1+.#%7) % required in the evaluation
of fi} from kg and r;y was carried out as explained in § 15. It will be seen that this involved
use of the master programmer in one small component of the main computing sequence as

well as in the main organization of the computation as a whole, and moreover independently
of this.

[{H(D}z + {H(o)}z] (17-10)

(17-11)

18. ApprricATION OF THE ENIAC TO THE EQUATIONS FOR
THE HIGHER-ORDER FUNCTIONS (n>1)

As for the null-order equations, the solution of the higher-order equations can be carried
out either by some iterative method or by integration from 5 = 0 with trial values of /,(0),
r,(0), these values being adjusted so that the solution satisfies the conditions at infinity, and,
for the same reasons as those given in § 16, the latter is the most suitable for application of
the ENIAC.

In the solution of these equations by a method of this kind, there are four main types
of computing routine involved.

(a) Evaluation of the input functions

oo S0, k16 Y (LHMirg) F, (1=f) M| (L4 A1),

which occur in the coefficients of the functions to be determined in all the higher-order
equations (fy with a factor 2z and A, 7 with a factor (2n-+1));
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(b) evaluation of the inhomogeneous terms C,, D,, E, given by (9:3), (9-4), (9-5), which
are peculiar to each value of 7;

(¢) procedure for a single interval of the integration;

(d) determination of £,(0), 7,(0) to satisfy the boundary conditions at infinity, and
evaluation of the corresponding solution.

Of these, (a) and (b) cannot usefully be considered until it is known in what form the data
will be most conveniently expressed for use in (¢), and it will be convenient to consider this
first. It will be understood that the sets of equations are solved in order of n increasing, so
that in the solution of the equations for the function of any order 7, the functions of order
j<n are known.

The equations (8:23), (9-1), (9-2) have properties similar to the three properties (§17 (i)
to (iii)) of the equations for the null-order functions, namely:

(i) the equation for f, involves only 4,, 7, and known functions;
(ii) the equation for 4, is linear in /4, and does not involve 7, ; ’

(iii) the equation for 7, is linear in 7.

The fact that the system of equations as a whole is linear in f,,, 7,, 4, is nof important at this
stage. These three properties enable a procedure very like that of §17 to be used, with
similar consequences, that the aggregate errors of the results are O (dy)? and that this accuracy
is obtained without successive approximation or estimation.

If, to avoid the use of suffixes both to indicate order of function and to distinguish
between values at the beginning and end of an interval, we write

by = u, by oy = U, =0, nop="V, f, =19, %If;za”: v

and also for shortness write

P = 3(00)? (b +Soly) = n(8n)2f5 u— (2n+1) WH—}(0)* D,

Q = 400 (jritors) = n(on)2 5 v (2n-+1) PR~ {(y 1) HU—}(09)*

the equations are Uy — ) = {(1—Fg)} Uo -+ Fop (18-1)
vy — o) = {(1 —0F)} i+ Qs (18-2)
¥ — A(u—Bo)+C, (18:3)
Piy— o = (30)2 Wi+ ), (18-4)

_1-F, 1 | )
Up =7 o Uo+1 +F(l){(P‘”+P‘°’}’ (18-5)

1—0ck o ‘

Vo =171, FE(I’:VZM' 1T o Q0T Qob (18-6)
uy— o) = HUp~+Ug}s (18:7)
v — o = 5V +Vo)- (18-8)

Equations (18-1), (18-2) were used for evaluating the u, and v, for use in calculating ¥,
the values derived from (18-7) and (18-8) being carried over as u), v, for the next interval
of the integration. This was done partly for the reason given after (17-11), and partly because,
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48 W. F. COPE AND D. R. HARTREE ON THE

for reasons connected with the use of cards for supplying numerical data to the machine,
some accuracy in the values of F; had to be sacrificed ; enough was retained for the calcula-
tion of ¢’, but it seemed advisable to obtain %y, and v, from the more accurate formulae
(18-7), (18:8), especially as these formulae are very simple and quick to evaluate.

These show that it would be best to evaluate once for all the quantities

1—Fy 1 1 — ok, 4
L+Fy’ 1+Fy' 1+l 4ok’

for each interval of integration, and so eliminate the comparatively slow process of division
from the evaluation of each solution; other data to be supplied are

Fo» Hy, Rgy, A=1/(1+Mir)'"F, B = (1—=F) MTho/(1+A11,),
and the values of the inhomogeneous terms
. Cn’ Dn) En)

for each interval of the integration; this is, altogether, 250 values of each of 12 functions.
This is much more than the capacity of the three function tables and shows that it is quite
necessary to use punched cards. Although use of these slows down the overall computing
speed of the machine considerably it leaves it still fast compared with other means of com-
putation; the evaluation of the 250 intervals of a solution might take 5 or 10 min. instead
of 4 min., but this is still quite fast.

Twelve functions to better than 5-figure accuracy is beyond the capacity of the relay
register of the ‘constant transmitter’ of the ENIAC. Further some of the data is common to
the equations for the functions of all orders n, whereas the rest is peculiar to each particular
value of 7, and it is desirable to keep these two kinds of information on different cards. So
it is necessary to use more than one card per interval, and, to limit demands on the memory
capacity of the accumulators, it seemed best to use three cards per interval, one with the

values of
Fy, Hy, Ry, 4, B, (18-9)

which are independent of » and are wanted early in the calculation for that interval, one
with the values of v

) (Chws D (Ew (18:10)
and one with the values of

1-Fy 1 1—oFy o

s Hp, R, 1811
11 R, 1+1F, 1iof, 1+tcF, —@ 20 (18-11)

which are independent of 7 but are wanted later in the interval, in particular after (C,)q
and (D,)) which must be taken from the card of that deck which is peculiar to each value
of n.

The decks of cards with the data (18:9) and (18:11) which apply to all values of » will be
called ‘Deck 1° and ‘Deck 3’ respectively; that with the data (18:10) appropriate to the
equations for the functions of any particular order n will be called ‘Deck (2,7)’. Forn =1
it seemed more convenient to evaluate

C¥ = Cy(1+M21)1~F = fmh,, - (1812)
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LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 49
and to use equation (8-241ii) in the form

Ji = A(ky—Bv, —CF),
the values of D, and E, are

Dy =gy = (14+A431)'F, E, = {ohy; (18:13)
deck (2:1) was punched with the values of
(s Dy (Er)w: (18-14)

which were calculated on the ENIAC from the cards for the solution of the equations of
order 0. It was convenient to carry out these calculations in such an order that the cards
for each interval of the integration were punched in the deck-order 3, 1, (2, 1). A deck-
number was punched on each card in the course of the calculation, and when finished they
were sorted into separate decks by a card sorter. The sorter was then used to rearrange them
in order of 7;), the cards for each single interval 7, to 7, being in deck-order 1, (2, 1), 3 for
which they are wanted for the use of the data in formulae (18-1) to (18:8) (for the way of
using the sorter to effect this rearrangement I am indebted to Miss K. McNulty). After the
completion of the integration of these equations they can be again sorted into separate decks,
and decks 1 and 3 similarly combined with deck (2, 2) for the equations for thesecond-order
functions.

It seems practicable to use the ENIAC for the evaluation of the inhomogeneous terms
C,, D,, E, occurring in the equations for the functions of order higher than 1, and a scheme
for the organization of this work has been drawn up, but so far it has not been tried.

The other aspect of the problem of the solution of the equations for the higher-order
functions is the determination of the values of #,(0) and 7,(0) so that the solution should
satisfy the conditions at infinity. The equations being linear, a formal possibility at least is
to evaluate a particular integral and two complementary functions all satisfying the

conditions J(0) = h,(0) = 1,(0) = 0,

and form a linear combination of them so as to satisfy the conditions at infinity. For numerical
work it is often found that this method is a purely formal possibility rather than a practically
useful one, but in the present case it seems practicable, at least for n =1 for which the
complementary functions do not increase more rapidly than #? for large 7, and it may be
practicable for higher values of .

The modification of the ENIAC set-up to evaluate the complementary functions is trivial ;
the accumulators which normally receive C,, D, and E, at each interval from the constant
transmitter are set to do nothing at that stage, instead of to receive, and to emit a programme
pulse at the end of it as usual, so that the remainder of the calculation continues as before.
For the complementary functions it is convenient to take the initial conditions

/Z;z(o) =1, rn(O) =0,
and R, (0) =0, 7,(0) =1,

or these multiplied by suitable powers of 10. Once the coefficients of the complementary
functions have been determined, the formation of the linear combination of the particular
integral and two complementary functions can be carried out on the ENIAC. This can be

Vol. 241. A. 7
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50 W. F. COPE AND D. R. HARTREE ON THE

done very easily since the data required in this calculation are already on punched cards
which is the form in which they would be required as input data to the machine.

If the trial values of 4,(0) and 7,(0) are far from the right values, 4,(0) or 7,(0) or some
intermediate quantity may build up to large values, and exceed the capacity of one of the
accumulators. This would give spurious results, and might not be easy to detect if only one
particular integral were evaluated. For this reason, the following procedure has been used
for n = 1. Solutions for values of #(0), 7,(0) forming a lattice in the (£{(0), 7,(0)) plane were
first carried as far as » = 3, and for each one the value of 4{(3), r{(3) recorded. The results
were plotted in the (4{(3), 71(3)) plane; on account of the linearity of the equations, the
curves £{(0) = const. and 7,(0) = const. in this plane should be strictly parallel straight
lines, equally spaced if the values of #1(0) and r,(0) are equally spaced. This, first, enables
spurious solutions to be identified at a glance, without any detailed examination or analysis,
and secondly, enables a good estimate to be made of the values of #{(0) and 7,(0) required
to give A{(8) = r{(8) = 0 (or other values if any useful estimates can be made). The values
of 71(3) and r{(3) will not be exactly 0 for the final solution, but they will probably be small,
and a solution with initial values which makes them zero can be continued to 7 = 4 or 5
and the process repeated. When fairly good values of 7;(0) and r,(0) have been obtained by
this procedure, the solution can be completed by evaluating a particular integral and two
complementary functions and forming a linear combination. '

19. REsuLts

The results so far evaluated are the null-order functions for #% = 0, 2, 4, 6, 8,10, 12, 16, 20
and an approximation to the first-order functions for .#% = 10. The ENIAC was required
for other work of higher priority before the exploratory work for .#} = 10, n = 1 had been
completed, but it is hoped that the machine may be used to complete the solutions for the
above values of .#% for n = 1 and to go to n = 6 or 7 for .#% = 10.

For .#% = 20, results were calculated with two values of the integration interval, dy = 0-02
and dy = 0-04, to provide an indication of the magnitude of the second-order integration
errors, and to enable approximate corrections for them to be made by Richardson’s (1927)
¢ h2-extrapolation’ process. If 4 represents the difference, at constant 7, between the values
of a quantity z calculated with dy = 0-02 and 0y = 0-04, with the sign given by

Az = (z calculated with dy = 0-04) — (z calculated with oy = 0-02), (19-1)
the ‘corrected’ value of z given by this process is
(z corrected) = (z calculated with 0y = 0-02) —14z. (19-2)

Some examples are given in table 2. It should be noted that the operations 4, defined by
(19-1), and (9/dy) are not commutative, since part of the difference 4z in a quantity such as
hy, evaluated by integrating by either of the approximate formulae (17-4) or (17-5), arises
from the aggregate second-order error in this integration formula. It can be seen on inspec-

‘tion of the results in table 2, or the fuller results in table 3, thatf Ah{dy differs considerably
from 4k, 0.
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TABLE 2. EXAMPLE OF h2-EXTRAPOLATION FOR Aj and k. #2=20

7 0 0-6 1-2 1-8
2% {877 =0-04 24871959 2-3941488 1-8362254 0-9085323
0189 =0-02 2-4871024 2-3942014 1-8362670 0-9084410
A(2h}) 935 —526 —416 +913
—1A(2h;) —312 +175 +139 — 304
2hg corrected 2-4870712 2-3942189 - 1-8362809 0-9084106
f (h; corrected) dy 0 0-73910208 1-38802195 1-80129808
0
A {817=0-O4 0 0-73916955 1-38818596 1-80148906
016y =0-02 0 0-73911892 1-38806291 1-80134574
hy 0 +5063 +12305 +14332
—+4h, 0 —1688 — 4102 — 4777
hy corrected 0 0-73910204 1-38802189 1-80129797
(hy corrected)
_ f (H corrected) dy 0 0-00000004 0-00000006 0-00000011
0
Vi 24 3-0 36
o { 0n=0-04 0-2471652 0-0338846 0-0022677
0189 =0-02 0-2471481 0-0339220 0-0022792
A(2h) +171 —374 —-115
—34(2h§) — 57 +125 + 38
2k corrected 10-2471421 0-0339345 0-0022830
f (} corrected) dy 1-96202215 1-99607725 1-99979088
0
A {877 =0-04 1-96213189 1-99610597 1-99979352
00y =0-02 1-96204949 1-99608432 1-99979141
0 +8240 +2165 +211
— 34k, — 2747 — 722 - 70
hy corrected 1-96202202 1-99607710 1-99979071
(hy corrected)
0-00000013 0-00000015 0-00000017

- f (hg corrected) dy
0

A B
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As a check, ‘corrected’ values of ; have been evaluated at intervals § = 0-02, and inte-
grated by a formula correct to third differences (contributions from higher-order differences
of hy are negligible, with this integration interval), and the results compared with the
‘corrected’ values of £,. Examples are given in table 2. The residual differences are less
than 2x 1077 in A, which is about 1/200 of the maximum value of the correction —344,.
Part of this residual difference arises from the accumulation of rounding-off errors in the
various integrations. But its general trend suggests that there is a systematic contribution,

~probably from higher-order error terms in the integration formulae. Similar results were
obtained for 7, and f,, and suggest that the errors in the final ‘ corrected’ values are not more
than 1 in the sixth decimal. :

The quantities actually recorded in the course of a solution with 0y = 0-02 were 24, &,
drg, 214, fo 5 fo; those finally tabulatedt are &, A, 74, 79, f4 /0, rounded off to 6 decimals.

The variations of £, 7, and f;, with 7 are nearly the same for different values of .#? (see
figures 11, 12), and it seems likely, therefore, that the aggregate second-order errors of the
integration method are nearly independent of .#%. The final results tabulated in table 4

1 The results given in the tables are only about a fifth of the total available. The original ENIAC
solutions, with explanatory notes, have been filed at Teddington, in the custody of the Secretary, Aero-
nautical Research Council, where they are available for reference in connexion with work for which it
would be an advantage to have results at a smaller tabular interval.

7-2
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52 W. F. COPE AND D. R. HARTREE ON THE
TABLE 3. #%=20. SOLUTION WITH J7 = 0-02 AND CORRECTION FOR FINITE INTERVAL LENGTH
2h; K hy hy
7 (o9=0-02) —3x1074(2h;) (corrected) (6p=0-02) —%x1074h, (corrected)
0 2-4871024 —-312 1-243536 0 0 0

0-1 2-4866560 —224 1-243317 0-1243499 — 18 0-124348
0-2 2-4835854 —137 1-241786 0-2486236 — 40 0-248620
0-3 2-4752829 — 51 1-237639 0-3726247 — 66 0-372618
0-4 2-4591972 + 32 1-229600 0-4960273 - 97 0-496018
0-5 24329040 +109 1-216457 0-6183809 —131 0-618368
0-6 2-3942014 175 1-197109 0-7391189 —169 0-739102
0-7 2-3412266 226 1-170625 0-8575724 —209 0-857551
0-8 2-2725831 257 1-136304 0-9729905 —251 0-972965
0-9 2-1874686 265 1-093748 1-0845668 —293 1-084537
1-0 2-0857847 247 1-:042905 1-1914718 —335 1-191438
11 1-9682174 204 0-984119 1-2928906 —374 1-292853
1-2 1-8362670 139 0-918140 1-3880629 —410 1-388022
1-3 1-6922194 56 0-846112 1-4763233 —441 1-476279
1-4 1-5390498 — 35 0-769523 1-5571386 —465 1-5657092
1-5 1-3802625 —125 0-690125 16301382 —482 1-630090
1-6 1-2196753 —206 0-609827 1-6951360 —490 1-695087
1-7 1-0611713 —268 0-530572 1-7521392 —488 1-752090
1-8 0-9084410 —304 0-454205 1-8013457 —478 1-801298
1-9 0-7647438 —313 0-382356 1-8431282 —459 1-843082
2-0 0-6327158 —294 0-316343 1-8780073 —431 1-877964
2-1 0-5142418 —252 0-257108 1-9066171 —397 1-906577
2-2 0-4104037 —193 0-205192 1-9296661 —359 1-929630
2-3 0-3215031 —125 0-160745 1-9478969 —-317 1-947865
2-4 0-2471481 —057 0-123571 1-9620495 —275 1-962022
2-5 0-1863883 4006 0-093194 1-9728295 —233 1-972806
26 0-1378731 +057 0-068939 1-9808844 —193 1-980865
2.7 0-1000155 094 0-050012 1-9867874 —156 1-986772
2-8 0-0711418 117 0-035577 19910296 —124 1-991017
2-9 0-0496144 126 0-024813 19940190 — 96 1-994009
30 0:0339220 125 0-016967 1-9960843 - 72 1-996077
31 0-0227362 115 0-011374 1-9974832 — 53 1-997478
32 0-0149382 100 0-007474 1-9984120 — 38 1-998408
3-3 0-0096207 83 0-004814 1-9990166 - 27 1-999014
34 0-0060734 67 0-:003040 1-9994023 — 18 1-999400
35 0-0037581 52 0-001882 1-9996435 — 11 1-999642
36 0-0022792 39 0-001142 1-9997914 - 17 1-999791
3-7 0-0013549 28 0-000679 1-9998803 - 4 1-999880
3-8 0-0007893 19 0-000396 - 1-9999326 - 2 1-999932
39 0-0004507 13 0-000226 1-9999628 - 1 1-999963
4-0 0-0002522 8 0-000126 1-9999799 1-:999980
4-1 0-0001382 5 0-000069 1-9999894 1-999989
4-2 0-0000742 3 0-000037 1-9999945 1-999994
4-3 0-0000390 2 0-000020 1-9999972 . 1-999997
4-4 0-0000200 1 0-000010 1-9999986 1-999999
45 0-0000101 0 0-000005 1-9999994 1:999999
4-6 0-0000049 0-000002 1-9999997 2-000000
4-7 0-0000023 0-000001 1-9999999 2-000000
4-8 0-0000010 0-000001 2-0000000 2-000000
4-9 0-0000005 0-000000 2-0000000 2-000000
50 0.0000002 2-0000000 2-000000
51 0-0000001

52 0-0000000

53

54

5:5
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TABLE 3 (cont.)
4r; 74 27, 7
(09=0-02) —1x1074(4r;) (corrected) (09=002) —3%x1074(2r;) (corrected)
0 0 0 0-3368323 — 56 0-168413

—0-0442187 + 7 —0-011054 0-3357266 — 56 0-167861
—0-0883237 + b —0-022081 0-3324121 — 55 0-166203
—0-1320259 - 7 —0-033007 0-3269006 — 53 0-163448
—0-1748492 — 27 —0-043713 0-3192234 — 50 0-159609
—0-2161444 — 56 —0-054037 0-3094400 — 45 0-154718
—0-2551137 — 90 —0-063781 0-2976461 — 40 0-148821
—0-2908515 —128 —0-072716 0-2839803 — 33 0-141989
—0-3223995 —165 —0-080604 0-2686280 — 24 0-134313
—0-3488156 —198 —0-087209 0-2518225 — 15 0-125911
—0-3692523 —222 —0-092319 0-2338422 - 4 0-116921
—0-3830366 —236 —0-095765 0-2150038 + 7 0-107502
—0-3897423 —236 —0-097441 0-1956520 19 0-097827
—0-3892456 —222 —0-097317 0-1761450 32 0-088074
—0-3817540 —194 —0-095443 0-1568395 44 0-078422
—0-3678027 —156 —0-091955 0-1380732 55 0-069039
—0-3482198 —111 —0-087058 0-1201495 66 0-060078
—0-3240612 — 64 —0-081017 0-1033245 75 0-051666
—0-2965271 - 19 —0-:074132 0-0877974 82 0-043903
—0-2668685 + 19 —0-066717 0-0737057 87 0-036857
—0-2362980 + 49 —0-059073 0-0611250 90 0-030567
—0-2059147 67 —0-051477 0-0500728 90 0-025041
—0-1766479 76 —0-044160 0-0405156 89 0-020262
—0-1492260 76 —0-037305 0-0323784 86 0-016193
—0-1241661 69 —0:031040 0:0255551 81 0-012782
—0-1017836 57 —0-025444 - 0-:0199188 75 0-009963
—0-0822139 43 —0-020552 0-0153316 68 0-007669
—0:0654436 28 —0-016360 0-0116525 60 0-005829
—0:0513438 14 —0-012836 0-0087444 53 0-004375
—0-0397048 + 1 —0-009926 0-0064787 45 0-:003241
—0-0302657 - 9 —0-007567 0-0047387 38 0-:002371
—0-0227420 — 16 —0-005686 0-0034215 32 0-001712
—0-0168455 - 20 —0-004212 - 0-0024385 26 0-001221
—0-0123005 - 22 —0-003076 0-0017153 21 0-000859
—0-0088542 — 23 —0-:002214 0-0011909 16 0-000596
—0-0062829 - 22 —0-001571 0-0008159 12 0-000409
—0-0043950 - 20 ~0-001099 0-:0005517 9 0-000256
—0-0030307 - — 18 —0-000758 0-0003681 7 0-000184
—0-0020602 — 15 —0-000515 0-0002423 5 0-000121
—0-0013806 — 12 —0-000345 0-0001574 3 0-000079
—0-0009120 - 10 —0-000228 0-:0001009 2 0-000051
—0-0005939 - 8 —0-000149 0-0000638 2 0-000032
—0-0003813 - 6 —0-000095 0-:0000398 1 0-000020
—0-0002413 — 4 —0-000060 0-0000245 1 0-000012
—0-0001505 - 3 —0-000038 0-0000149 0-000007
—0-0000926 - 2 —0-000023 0-0000089 0-000004
—0-0000561 - 2 —0-000014 0-0000053 0-000003
—0-0000336 -1 —0-000008 0-0000031 0-000002
—0-0000198 -1 —0-000005 0-0000018 0-000001
—0-0000115 - 1 —0-000003 0-0000010 0-000001
—0-0000066 0 —0-000002 0-0000006

—0-0000037 —0-000001 0-0000003

—0-0000020 —0-000001 0-0000002

—0-0000011 0-0000001

—0-0000005

—0-0000002
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TABLE 3 (cont.)

Jo 0 Jo , Jo
(6p=0-02)  —%x107(4f,) (corrected) (09 =0-02) —~3x10°4f,  (corrected)
0 0 0 0 0 0

0-1055897 - 14 0-105588 0-0052789 - 1 0-005279
0-2112939 — 31 0-211291 0-0211219 - 4 0-021121
0-3171285 — 52 0-317123 0-0475422 - 8 0-047541
0-4230044 - 77 0-422997 0-0845491 - 14 0-084548
0-5287312 —106 0-528721 0-1321380 - 22 0-132136
0-6340208 —138 0-634007 '0-1902805 — 33 0-190277
0-7384950 —-173 0-738478 0-2589145 — 45 0-258910
0-8416942 —210 0-841673 0-3379361 — 59 0-337930
0-9430911 —250 0-943066 0-4271920 - 75 0-427186
1-0421074 —291 1-042078 0-5264734 — 93 0-526464
1-1381338 —332 1-138101 0-6355118 —113 0-635500
1-2305525 —372 1-230515 0-7539775 —135 0-753964
1-3187613 —411 1-318720 0-8814791 —160 0-881463
1-4021976 —446 1-402153 1-0175673 —186 1-017549
1-4803612 —476 1-480314 1-1617392 —214 1-161718
1-5528331 —500 1-552783 1-3134459 —243 1-313422
1-6192924 —517 1-619241 1-4721013 —273 1-472074
1-6795274 —527 1-679475 1-6370926 — 304 1-637062
1-7334428 —526 1-733390 1-8077917 —336 1-807758
1-7810624 —519 1-781011 1-9835669 —368 1-983530
1-8225286 —500 1-822479 2-1637948 —399 2:163755
1-8580967 —473 1-858049 2-3478719 —429 2-347829
1-8881249 —441 1-888081 2-5352256 —457 2-535180
1-9130589 —404 1-913015 2-7253236 —483 2725275
1-9334114 —362 1-933375 2-9176816 —507 2-917631
1-9497366 =317 1-949705 3-1118689 —528 3-111816
1-9626038 —272 1-962577 3-:3075113 —547 3:307457
1-9725702 —229 1-972547 3-:5042910 —563 3:504235
1-9801590 —189 1-980140 ~  3-7019445 —577 3-701887
1-9858420 —152 1-985827 3-9002580 —588 3-:900199
1-9900302 —120 1-990018 4-0990621 —597 4-099002
1-9930693 - 93 1-993060 4-2982250 —605 4-298165
1-9952423 - 11 1-995235 44976465 —611 4-497585
1-9967738 — b4 1-996768 4-6972517 —615 4-697190
1-9978387 — 40 1-997835 4-8969854 —618 4-896924
1-9985692 — 28 1-998566 50968080 —621 5-096746
1-9990639 - 19 1-999062 5:2966912 —622 5:206629
1-9993947 - 13 1999393 5-4966152 —623 5-496553
.1-9996132 - 9 1-999612 5-6965663 —624 5-696504
1-9997556 - 5 1-999755 5-8965352 —625 5-896473
1-9998475 - 3 1-999847 6-0965156 —625 6-096453
1-9999059 - 2 1-999906 6-2965035 —625 6-296441
1-9999426 - 1 1-999943 6-4964960 —625 6-496433
1-9999654 0 1-999965 6-6964915 —625 - 6696429
1-9999794 1-999979 6-8964888 —625 6-896426
1-9999878 1-999988 7-0964871 —625 7-096425
1-9999929 1-999993 7-2964862 —625 7-296424
1-9999958 1-999996 7-4964856 —625 7-496423
1-9999975 1:999998 7-6964852 —625 7-696423
1-9999986 1-999999 7-8964850 —625 7-896423
1-9999993 1-999999 8-:0964849 — 625 8-096422
1-9999996 2-000000 8-2964848 —625 8-:296422
1-9999998 2-000000 8-4964847 — 625 8-496422
8:6964847 —625 8-696422


http://rsta.royalsocietypublishing.org/

JA '\

Y |

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

A B

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

Downloaded from rsta.royalsocietypublishing.org

LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW 55

include, for each .#%, the corrections calculated for .#% = 20 and tabulated in table 3; they
were applied to the recorded value and the results rounded off to 6 decimals in 4, A, 74, 7o,
JfosJoas for A3 = 20. Six decimals are given in the final results, since some of these functions
may be multiplied by considerable factors in the equation for the higher-order functions;

A A
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7% or 7
Ficure 11. £k as a function of #* and of #, for zero pressure gradient.
0-20
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o \
3 0-16 ~
o \
2 . MI=10 .
S /7o against g
5 012 =~
&g , N
NaRi
A \\\x \\\\\\\\
= 3 008 N
/“2 g . ME=10 TN
| E vos 1 7o against n
= M%=0 \ \
Il rpagainst p*orn \\
ko ‘
0 1 2 3 4 5
7% or 7
Ficure 12. 7, as function of #* and of 4, for zero pressure gradient.
even in the equations for the first-order functions, 3f;, which multiplies 4y and 7§ (see equa-
tions (8-25ii) and (8:27ii)) is about 20 at # = 3. The quantity 7, is tabulated to the same
number of decimals as £, since, although it occurs multiplied by .#%, which may be as large
as 20, when this happens it is either in the form (1+4.#%r,)!~# or multiplied by (1—4), and
(1—p) = { for the solutions evaluated.

The quantity 7% = WOy = | (u) dy
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TABLE 4. NULL-ORDER FUNCTIONS

Mi=0

hy hy=/fo 70 7y Jo
1-328232 0-000000 0-000000 0-168945 0-:000000
1-327936 0-132816 —0-012611 168314 0-00664.1
1-325878 265529 — 25181 166424 0-026560
1-320314 397876 — 37608 163283 0:059735
1-309553 529420 — 49721 158913 0-106108
1-292024 659563 — 61291 153356 165571
1:266351 787556 — 72041 146681 237948
1:231456 0-912528 — 81666 138985 322981
1-186649 1-033519 — 89853 - 130396 420320
1131721 1:149522 —0:096312 121072 529517
1-067005 1259538 —0-100808 111198 650023
0-993405 1-362628 — 103187 0:100980 781192
912371 1457971 — 103395 0-:090633 0-922289
825825 1-544917 —0-101494 80371 1072505
736034 1-623026 —0-097657 70398 1-230975
645450 1-692095 — 92156 60895 1-396805
556521 1-752168 — 85332 52011 1569091
471512 1-803526 — 77570 43860 1:746946
392350 1-846662 — 69262 : 36516 1929521
320507 - 1-882237 — 60777 30014 2-116025
256937 1-911036 — 52438 24356 2:305740
202078 1-933913 — 44507 19513 2:498033
155887 1-951739 — 37176 15435 2:692353
0-117931 1-965364 — 30572 0:012054 2:888239
0-087481 1-975576 — 24760 0-009294 - 3:085311
0-:063623 1-983080 — 19754 , 7075 3-283263
45364 1-988488 — 15529 5318 3-481856
31709 1:992308 —0:012030 3946 3:680906
21726 1:994953 —0-009185 2890 3-880277
0-014593 1-996749 - 6912 2089 4-079867
0-009608 - 1-997944 — 5127 1491 4-279605
6201 1-998724 — 3749 0-001050 4-479441
3923 1-999222 — 2702 0-000730 4-679340
2433 1-999535 — 1920 501 4-879279
0-001479 1-999727 —0-:001345 339 5:079242
0-000881 1-999843 —0-000929 227 5:279221
515 1:999911 — 632 0-:000149 5:479209
295 1-999951 — 424 0-000097 5:679202
0-:000165 1-999973 — 281 62 5-879198
0-:000091 1:999986 - 183 39 6:079196
49 1-999993 —0-000118 25 6:279195
26 1:999996 —0-000075 0-:000015 6-479194
0-:000013 1-999998 — 47 0-000009 6-679194
0-000007 1:999999 — 29 5 6-879194
' 4 2:000000 — 17 3 7-079194
2 2:000000 —0-000010 2 7-279194
0-000001 2:000000 —0:000006 0-000001 7-479194
0-000000 2:000000 — 3 0-000000 7-679194
2-:000000 — 2 7-879194
2-:000000 —0-000001 8:079194

2-000000 0-000000 8-279194
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TABLE 4 (cont.)

Mi=2
7 hy hy 7% T Jo Jo
00 1-312581 0-000000 0-000000 0-168824 0-000000 0-000000
01 1-312302 0-131251 —0-012316 168213 0127090 0006354
0-2 1-310357 262405 — 24594 166367 254164 0025417
03 1-305093 393213 — 36737 163299 381058 0-057181
04 1-294907 523261 — 48587 159030 507450 0-101612
05 1-278299 651981 — 59928 153598 632863 158638
06 1-253945 778664 — 170500 147069 756675 228131

07 1-220786 0-902479 — 80013 139534 878135 309894
0-8 1-178116 1-022506 — 88167 131112 0-996391 403650
09 1-125670 1-137778 — 94683 121954 1-110521 509033
1-0 1-063685 1-247323 —0-099327 112237 1-219574 625583
1-1 0-992936 1-350223 —0-101938 0-102156 1-322622 752745
1-2 914719 1-445661 — 102448 0-091919 1-418809 0-889876
13 830798 1-532976 —0-100898 81735 1-507405 1-036252
1-4 743291 1-611700 —0-097434 71803 1-587850 1-191083
15 654532 1-681590 — 92299 62304 1-659792 1-353536
1-6 566887 1742641 ~ 85812 53389 1723107 1.522751
17 482593 1795077 — 78335 45175 1777905 1-697871
1-8 403596 1-839333 — 70248 37742 1-824517 1-878058
1-9 331430 1-876021 — 61915 31134 1-863467 2062518
2:0 267143 1-905880 ~ 53658 25357 1-895426 2250518
21 211284 1-929729 ~ 45745 20391 1-921169 2441396
22 163925 1-948419 — 38382 16190 1-941523 2634572
2.3 0-124737 1-962786 — 31705 0-012692 1.957316 2829549
24 0-093077 1-973617 — 25792 0009824 1-969344 3025911
25 68099 1-981624 — 20669 7507 1-978334 3-223318
2:6 48848 1.987428 — 16320 5664 1-984931 3-421499
27 34351 1-991553 —0-012698 4219 1-989684 3620244
2.8 23681 1.994427 —0-009738 3102 1.993047 3819391
2:9 16003 1996390 — 7360 9252 - 1.995385 4018820
30 0-010601 1-997704 — 5484 1614 1-996982 4218444
31 0006884 1-998567 — 4028 0001141 1-998054 4418199
3-2 4382 1-999122 — 2916 0-000797 1-998763 4-618043
3.3 2734 1-999472 — 2081 549 1-999224 4817944
3-4 1672 1-999688 — 1464 373 1-999519 5017883
35 0-001003 1-999820 —0-001016 250 1-999706 5-217845
3.6 0-000589 1-999898 —0-000694 166 1-999822 5417822
37 339 1-999943 — 468 0-000108 1-999894 5-617808
3-8 192 1-999969 - 31 0-000070 1-999937 5-817799
3.9 0-000106 1-999983 — 204 44 1-999963 6017794
4.0 0-000057 1-999991 —0-000132 28 1-999979 6217791
41 30 1-999996 —0-000084 17 1-999988 6417790
42 0-000016 1-999998 - 53 0-000010 1-999993 6-617789
43 0-000008 1-999999 - 33 0-000006 1-999996 6-817788
44 4 1-999999 - 20 4 1-999998 7017788
45 2 2000000 —0-000012 2 1-999999 7217788
46 0-000001 2000000 —0-000007 1 1-999999 7417788
47 0-000000 2000000 - 4 0-000001 2:000000 7617788
48 2-000000 - 2 0000000 2000000 7-817788
49 2000000 —0-000001 2000000 8017788
50 2000000 0-000000 2000000 8217788

Vol. 241. A. 8
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hy
1-300051
1-299784
1-297922
1-292885
1-283132
1-267220

1-243866
1-212031
1-171002
1-120478
1-060629

0-992133
916173
834389
748780
661575

575072
491471
412720
340393
275608

218996
170724
0-130546
0-097897
71986

51899
36683
25419
17266
0-011497

0-007504
4801
3011
1851

0-001116

0-000659
381
216
0-000120
0-000066

35
0-000018
0-000009

5
2

0-000001
0-000000

by
0-000000
0-129998
259904
389478
518325
645900

7715622
0-894392
1-013623
1-128277
1-237409

1-340115
1-435586
1-523155
1-602335
1-672856

1-734672
1-787965
1-833125
1-870721
1-901454

1-926114
1-945530
1-960528
1-971890
1-980332

1-986482
1-990875
1-993951
1996063
1-997484

1-998422
1-999028
1-999413
1-999652
1-999798

1-999885
1-999936
1-999965
1-999981
1-999990

1-999995
1-999997
1-999999
1-999999
2-000000

2-000000
2-000000

TABLE 4 (cont.)

Mr=4

o
—0-000000
—0-012082
— 24128
— 36046
— 47686
— 58843

— 69270
— 78687
— 86807
— 03358
—0-098109

—0-100894
— 101637
—0-100362
—0-097194
— 92357

— 86148
— 78913
— 71018
— 62821
— 54644

— 46760
— 39380
— 32651
— 26662
— 21446

— 16997
— 13274
—0-010218
—-0-007752
- 5797

— 4273
- 3105
- 2225
— 1571
—0-001094

—0-000751
— 508
— 339
- 223
—0-000144

—0-000092
— 58
— 36
- 22
—0-000013

—0-000008
— b
—0-000003
—0-000000

7o
0-168743
168134
166327
163317
159127
153796

147383
139975
131688
122666
113076

0-103109
0-092965
82849
72956
63466

54531
46271
38770
32077
26206

21139
16837
13241
0-010282
0-007883

5967
4460
3290
2396
1723

0-001223
0-000856
592
404
272

181
0-000119
0-000077

49
31

19
0-000012
0-000007

4
2

1
0-000001
0-000000

Jo
0-000000
0-122777

245586

368318

490721

612394

732801
851283
0-967072
1-079326
1-187156

1-289674
1-386033
1-475478
1-557392
1-631331

1-697056
1-754545
1-803992
1-845792
1-880503

1-908813
1-931484
1-949308
1-963069
1-973502

1981272
1-986958
1-:991048
1-:993941
1-995954

1-997334
1-998265
1-998884
1-999290
1-999554

1-999723
1-999829
1-999896
1-999937
1-999962

1-999978
1-999987
1-999992
1-999996
1-999998

1-999999
1-999999
2-000000
2+000000

Jo
0-000000
0-006138
0:024556

55253
0-098209
0-153373

220645
299868
390811
493163
606527

730416
0-864255
1-007391
1-159097
1-318600

1-485088
1-657735
1-835727
2-018278
2-204649

2394165
2-586223
2-780300
2-975950
3-172804

3-:370563
3-568990
3-767902
3-967161
4-166662

4-366331
4-566114
4-765974
4-965884
5-165827

5-365792
5565770
5-765756
5:965748
6-165743

6-365740
6-565738
6-765737
6-965737
7-165736

7-365736
7-565736
7-765736
7965736
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TABLE 4 (cont.)

Mr=6
hg hy 70 7o Jo Jo
1-289590 0-000000 ~0-000000 0-168674 0-000000 0-000000
1-289333 0-128953 —0-011888 168079 0-119338 0-005966
1-287538 257816 — 23742 166297 238735 0-023870
1282680 386359 — 35474 163335 358120 53713
1-273272 514201 — 46939 159211 477284 0-095486
1-257916 640816 — 57943 153962 595883 0-149151
1-235363 765545 — 68245 147646 713442 214628
1-204592 0-887615 — 77579 140345 829368 291784
1164888 1006167 — 85665 132171 0-942963 380423
1115924 1-120285 — 92239 123262 1-053449 480273
1057820 1229047 — 97071 113782 1-160000 590981
0-991181 1-331565 —0-099994 0-103912 1-261771 712112
917099 1-427035 —0-100924 0-093849 1-357943 843147
837114 1-514787 — 99873 83793 1447765 0-983488
753126 1594323 — 96953 73937 1530594 1132465
667277 1-665349 — 92366 . 64458 1605935 1289355
581799 1-727790 — 86394 55510 1673473 1453390
498856 1-781792 — 179368 47214 1-733089 1623783
420390 1-827708 — 71643 39659 1784867 1799745
348001 1-866071 — 63570 32897 1-829088 1980504
282857 1897549 — 55471 26946 1-866208 2-165325
225658 1922906 — 47620 21795 1-896820 2-353528
176643 1942952 — 40234 17407 1921617 2544496
135644 1958501 — 33468 13728 1941345 2737683
0-102160 1-970331 — 27417 0-010690 1956760 2:932621
0-075448 1979159 —~ 22125 0-008219 1968593 3-128916
54636 1985618 — 17592 6239 1-977518 3-326244
38790 1990252 — 13784 4676 1984134 3-524344
27000 1993512 —0-010645 3460 1988958 3723012
18422 1-995759 —0-008102 2528 1992418 3-922091
0-012322 1-997279 — 6079 1823 1-994861 4121462
0-008079 1998286 — 4496 0-001297 1-996561 4-321039

5192 1998940 — 3278 0-000911 1997726 4520757
3271 1999357 — 2356 632 1-998514 4720572
2020 1999617 — 1669 432 1:999039 4-920451
0-001223 1999777 —0-001166 292 1999386 5-120374
0-000726 1999872 —0-000803 194 1999611 5-320324
422 1999928 — 545 0-000128 1-999757 5-520293

241 . 1-999960 - 364 0-000083 1999849 5720274
0-000135 1-999979 — 240 53 1-999907 5-920262
0-000074 1999989 —~ 156 33 1999944 6-120255
39 1-999994 —0-000100 21 1-999966 6320250

21 1-999997 —0-000063 0-000013 1-999980 6-520248
0-000011 1-999999 - 40 0-000008 1-999988 6-720246
0-000005 1-999999 - 24 4 1-999993 6-920245
3 2-000000 —0-000015 2 1-999996 7-120245

1 2-000000 —0+000009 1 1999998 7-320244
0-000001 2-000000 - 5 0-000001 1999999 7-520244
0-000000 2-000000 —~ 3 0-000000 1999999 7720244
2-000000 —0+000002 2-000000 7-920244

8-2
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I
1-280609
1-280357
1-278617
1-:273908
1-264786
1:249890

1-228002
1-198116
1-159518
1-111862
1-055228

0-990163
917686
839253
756680
672033

587485
505164
426999
354610
289203

231531
181900
140201
0-105993
0-078584

57130
40721
28456

19494 .

0-013092

0-008618
5561
3518
2181

0-001326

0-000790
461
264
0-000148
0-000081

44

23
0-000012
0-000006
3

1
0-000001
0-000000

ho
0-000000
0-128054
256022
383680
510657
636445

760403
881779
999736
1-113382
1-221810

1-324146
1-419595
1-507484
1-587307
1-658750

1-721715
1-776320
1-822885
1-861911
1-894039

1-920009
1-940613
1-956653
1-968903
1-978078

1-984818
1-989673
1-993101
1995474
1-997084

1-998157
1-998856
1-999303
1-999584
1-999756

1-999860
1-999921
1999956
1-999976
1-999987

1-999994
1-999997
1-:999998
1-999999
2-000000

2-000000
2-000000
2-000000
2-000000

TABLE 4 (cont.)
My=8

0
—0-000000
—0-011723
— 23413
— 34986
— 46302
— b7173

— 67368
— 76628
— 84682
— 91270
— 96166

—0-099202
—0-100288
— 99426
— 96715
— 92344

— 86578
— 79737
— 72165
— 64206
— 56182

— 48366
— 40981
— 34187
- 28087
— 22731

— 18126
— 14244
—0-011031
—0-008421
— 6336

— 4700
— 3436
- 2477
- 1760
—0-001233

—0-000851
- 579
- 389
— 257
- 168

—0-000108
—0-000068
- 43
- 26
- 16

—0-000010
--0-000006
- 3
- 2
- 1

o
0-168618
168032
166274
163353
159286
154107

147873
140664
132587
123777
114390

0-104605
0-094614
84613
74791
65325

56368
48045
40446
33625
27607

22382
17919
14166
0-011059
0-008524

6488
4875
3617
2649
1915

0-001366
0-000962
669
459
311

207
0-000137
0-000089

57
36

22
0-000014
0-000008

5
3

2
0-000001
0-000000

Jo
0-000000
0-116489

233054

349650

466101

582102

697223
810924
0-922562
1-031416
1-136709

1-237643
1-333431
1-423338
1-506717
1-583047

1-651962
1-713273
1-766980
1-813270
1-852502

1-885184
1-911935
1-933445
1-950437
1-963625

1-973684
1-981226
1-986788
1-990825
1-993710

1.995741
1-997151
1-998116
1-998768
1-999203

1-999490
1-:999677
1-999798
1-999874
1-999923

1-999954
1-999972
1-999983
1-999990
1-:999994

1-999997
1-999998
1-999999
2-000000

Jo
0-000000
0-005824
0-023300

52436
0-093226
0-145641

209616
285038
371732
469457
577895

696652
825251
0-963141
1-109700
1-264248

1-:426061
1-594386
1768461
1947534
2-130879

2-317815
2-507718
2-700028
2-894257
3-:089989

3-286878
3-484642
3-683058
3-881950
4-081185

4-280664
4-480313
4-680079
4-879926
5-079826

5-279762
5-479721
5-679695
5-879679
6-079669

6-279663
6-479659
6-679657
6-879655
7-079655

7-279654
7-479654
7-679654
7-879654
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TABLE 4 (cont.)

M3=10

hy hy 7o 7o Jo Jfo
1-272733 0-000000 —0-000000 0-168571 0-000000 0-000000
1-272491 0-127267 —0:011579 167992 0-114064 0-005703
1-270798 254450 — 23127 166256 228217 0-022816
1-266214 381331 — 34561 163370 342431 51348
1-257334 507550 — 45747 159352 456553 0091299
1-242830 632611 — 56502 154235 570310 0-142646
1-221507 755889 — 66602 148073 683308 205335
1-192377 876652 — 75795 140944 795047 - 279266
1-154726 0-994081 — 83818 132953 0-904930 364283
1-108192 1-107302 — 90415 124228 1-012282 460167
1-:052825 1-215425 — 95363 114925 1-116370. 566629
0-989124 1-317589 — 98494 0-105216 1-216439 683306
918045 1:413004 — 99712 0-095290 1-311735 809757
840974 1-500998 — 99013 85338 1-401544 0-945469
759656 1-581057 — 96484 75548 1-485226 1-089861
676088 1-652853 — 92301 66096 1-562249 1-242292
592388 1-716268 — 86718 57135 1-632215 1-402074
510651 1771395 — 80042 48789 1-694888 1-568490
432796 1-818527 — 72609 41151 1-750201 1-740806
360449 1-858137 — 64756 34281 1-798264 1-918288
294847 1-890841 — 56803 28204 1-839355 2:100225
236791 1-917358 — 49024 22915 1-873900 - 2-285940
186635 1-938462 — 41644 18386 1-902445 2:474805
144332 1:954946 — 34830 14567 1-925624 2-666250
0-109489 1-967578 — 28689 0-011397 1-944117 2-859774
0-081459 1-977072 — 23279 0-008805 1-958615 3:054941
59429 1-984070 — 18612 6717 1-969785 3251386
42512 1-989128 — 14663 5059 1-978246 3-448808
29814 1-992713 —0:011386 3762 1-984549 3:646964
20499 1-995204: —0-008714 2761 1-989170 3:845662
0-013816 1-996901 — 6574 2001 1-992506 4-044755
0-009129 1-998034: — 4889 1431 1-994878 4-244132
5912 1-998776 — 3584 0-001010 1-996541 4-443708
3754 1-999252, — 2590 0-000704 1-997691 4-643423
2336 1-999551 — 1845 484 1-998476 4-843234
0-001425 1-999736 —0-001296 328 1-999006 5-:043110
0-000852 1-999848 —0-000897 220 1-999358 5-243029
499 1-999914. — 612 0-000145 1-999590 5:442978
287 1999952 — 412 0-000095 1-999741 5642945
0-000161 1-999974 — 273 61 1-999838 5-842924
0-000089 1-999986 — 179 39 1-999900 6-:042911
48 1-999993 —0-000115 24 1-999939 6:242903
25 1-999996 —0-000073 0-000015 1-999963 6:442899
0-000013 1-999998 — 46 0-000009 1-999978 6-642896
0-000006 1-999999 — 28 5 1-999987 6-842894
3 2:000000 — 17 3 1999993 7-042893
2 2-000000 —0-000010 2 1-999996 7-242892
0-000001 2-000000 —0-000006 0-000001 1-999998 7:442892
0-000000 2-:000000 — 3 0-000000 1-999999 7-642892
2-000000 - 2 2-000000 7-842892

2-000000 - 1 2-000000 8:042892
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TABLE 4 (cont.)
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Mi=12

Iy hy 75 o Jo Jo
1-265725 0-000000 —0-000000 0-168531 0-000000 0-000000
1-265489 0-126567 —0-011452 167958 0-111959 0-:005597
1-263837 253051 — 22874 166241 224015 0:022395
1-259362 379240 — 34185 163387 336154 50403
1250692 504783 — 45255 159412 448243 0:089624
1:236527 629196 — 55907 154350 560029 0:140042
1:215695 751867 — 65922 148252 671151 201608
1187222 872080 — 75055 141194 781140 274234
1150395 0-989033 — 83048 133279 889437 357779
1-104842 1-101869 — 89650 124631 0-995406 452043
1-050586 1-209712 — 94642 115402 1-098355 556759
0-988086 1-311711 — 97853 0-105762 1-197563 671589
918244 1-407084 — 99186 0:095894 1:292309 796122
842386 1-495159 — 98629 85988 1:381903 0-929879
762193 1575416 — 96260 76229 1465716 1-072309
679603 1-647517 — 92245 66791 1543216 1-222810
596686 1:711325 — 86826 57826 1-613987 1:380727
515501 1-766911 — 80299 49462 1677759 1545373
437955 1-814546 — 72993 41793 1-734416 1716041
365678 1-854677 — 65239 34879 1-784007 1-892020
299932 1-887899 - — 57353 28749 1-826737 2:072613
241554 1:914909 — 49612 23403 1-862960 2:257150
190949 1:936468 — 42241 18815 1893155 2:445004
148116 1-953358 — 35411 14937 1-917895 2:635600
112709 1-966339 — 29237 0-011711 1937815 2:828423
0:084120 1-976127 — 23780 0-009066 1-953577 3:023024
61568 1-983365 — 19057 6930 1:965834 3:219022
44185 1-988613 — 15050 5231 1975203 3:416095
31090 1-992345 —0:011714 3898 1982247 3-613985
21447 1994946 —0-008987" 2867 1987458 3-812484
0:014504 1996724 — 6796 2082 1-991253 4-011430
0-009615 1:997915 — 5066 1493 1-993976 4-210699
6248 1-998698 — 3723 0-001056 1995901 4-410199
3980 1:999202 - 2697 0:000738 1:997244 4-609860
2485 1-999520 — 1926 508 1-998168 4-809634
0-001521 1-999717 —0-:001356 346 1-998796 5:009484
0-000913 1-999836 —0-000941 232 1:999217 5:209386
537 1-999907 - 644 154 1-999497 5-409323
309 - 1:999948 — 434 0-000100 1-999680 5-609282
0-000175 1:999972 — 289 0-000063 1-999799 5:809256
0-000097 1999985 —_— 189 41 1-999875 6:009240
52 1-999992 —0-000122 26 1:999924 6-209231
28 1-999996 —0-000078 16 1-999954 6-409225
0-000014 1:999998 - 49 0:000010 1-999972 6:609221
0-000007 1:999999 — 30 0-000006 1-999984 6-809219
4 2:000000 — 18 3 1-999991 7-009218
2 2-:000000 —0-000011 2 1999995 7-209217
0-000001 —0-000007 0-000001 1:999997 7-409216
0-000000 — 4 0-000000 1:999999 7-609216

- 2
—0-000001
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TABLE 4 (cont.)

Mr=16
kg hy 70 7 Jo Jo
1-253669 0-000000 — 0000000 0-168465 0-000000 0-000000
1253442 0-125361 —0-011235 167903 0-108444 0-005422
1-251857 250643 - 22441 166219 216997 0-021693
1-247563 375642 — 33542 163418 325662 48825
1239242 500022 — 44414 159518 434332 0-086825
1-225642 623315 — 54888 154549 542791 0-135684
1-205630 744936 — 64756 148561 650720 195366
1178253 864195 — 173783 141626 757703 265797
1-142808 0-980318 — 81721 133840 863238 346858
1098903 1-092475 — 88327 125326  0-966750 438376
1046522 1199816 — 93386 116227 1-067613 540119
0-986056 1-301509 — 96729 0-106706 1165167 651788
918325 1:396784 — 98253 0-096941 1-258747 773020
844551 1484972 — 97934 87117 1-247709 0-903384
766310 1-565545 — 95837 77414 1-431459 1042388
685438 1638146 — 92109 68004 1509474 1-189484
603919 1702611 — 86973 59039 1-581330 1344077
523750 1758975 — 80708 50647 1646719 1505534
446807 1807468 — 73627 42925 1705460 1-673198
374724 1-848498 — 66053 35938 1757513 1-846402
308796 1-882618 — 58293 29720 1-802977 2:024481
249922 1-910492 — 50625 24276 1-842084 2-206785
198582 1932854 — 43279 19584 1-875190 2392697
154857 1-950463 — 36431 15604 1902754 2-581638
0-118485 1964070 — 30204 0-012278 1925316 2-773081
0-088927 1-974387 — 24670 0-009540 1943467 2-966555
65458 1982059 — 19854 7320 1-957816 3-161648
47249 1-987654 — 15746 5545 1968966 3-358012
33441 1-991656 —0-012308 4148 1977484 3-555354
23204 1994461 —0-009483 3063 1983884 3-753438
15785 1-996390 - 7202 2233 1988616 3-952075
0-010527 1:997690 — 5392 1607 1992061 4151118
0-006881 1998549 - 3979 0-001142 1994532 4-350455

4410 1-999106 - 2895 0-000801 1-996280 4-550001
2770 1999459 - 2076 554 1-997499 4749693
1705 1999679 — 1468 378 1-998338 4-949488
0-001029 1999813 —0-001023 255 1-998908 5-149352
0-000609 1-999893 —0-000703 - 170 1-999291 5-349263
353 1999940 — 476 0-000111 1999545 5-549206
201 1-999967 - 318 0-000072 1-999711 5749169
0-000112 1-999982 - 209 46 1999819 5-949146
0-000061 1999991 —0-000136 29 1999888 6-149132
33 1:999995 —0-000087 18 1999931 6-349123
0-000017 1999998 - 55 0-000011 1999958 6-549117
0-000008 1999999 - 34 0-000007 1-999975 6749114
4 2-000000 ~ 21 4 1-999985 6-949112

2 2000000 ~0-000012 2 1-999991 7-149111
0-000001 2-000000 —0-000007 1 1999995 7-349110
0-000000 2000000 - 4 0-000001 1:999997 7-549110
- 2 0-000000 1999998 7-749110

- 1 1-999999 7-949110 .
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is given, for the case of zero pressure gradient and f = § (and only then), by
7* =f (1-+3r)s dy.
0
In figure 11, p. 55, 14,, which for zero pressure gradient is the tangential velocity «*, is shown
as a function both of 7 and of #* for .#% = 10, and also for .#% = 0 for which y* = 5. It will be

seen how very much smaller is the variation of u* with .#% when «* is regarded as a function
of 7 than when it is regarded as a function of 7*. Figure 12 shows similar results for 7.

TABLE 5. VALUES OF 2/,(0) AND 27,(0)

final solution with dy=0-02 corrected for finite interval length
M} 215(0) 2r,(0) 2h5(0) 27,(0)

0 2-656494 0-3378957 2-65646 0-337889
: —3130 —232

2 2-625194 0-3376644 2-62516 0-337657
: : —2506 —173

4 2-600133 0-3374907 2-60010 0-337484
—2092 —138

6 2-579211 0-3373535 2-57918 0-337346
—1797 —112

8 2-561244 0-3372415 2-56121 0-337234
—1574 - 94

10 2-545498 0-3371470 2-54547 0-337140
—1402 — 81

12 2-531482 0-3370666 2-53145 0-337059
—2411 —130

16 2-507368 0-3369360 2-50734 0-336929
—2027 =104

20 2-487102 0-3368322 2-48707 0-336825

final solution with dy=0-04
20 2-487195 0-3368499

For 4% = 0, hy = fy, and f;, fy, fo have been tabulated to 5 decimals by Howarth (1938);
but this case was included in the present work in order to obtain 7, and r;, which were not
evaluated by Howarth. The values of /, given in table 4 for .#% = 0 differ by up to 2 units
in the fifth decimal from Howarth’s values of fj, and the value of /((0) = 1-328232 differs
by 10 in the sixth decimal from the value f'(0) = 1-328242 quoted by Howarth. A possible
reason for this discrepancy is that the variation with .#% of the correction —3§4#, for the
aggregate second-order integration error is larger than expected, but the variation required
to account for it is quite considerable; —34[24y(0)] for .#%2 = 20 is —312x 1077, whereas
to make the solution for .#% = 0 evaluated with dy = 0-02 agree with the result quoted by
Howarth, a value of about — 105 x 10~7 would be required. The general similarity of the
behaviour of %, in the two cases makes such a large variation with .#% appear unlikely. The
origin of the discrepancy has not been traced; the results are put on record since there is no
reason from internal evidence to suspect them.

The values of ,(0) and 7,(0), for the solutions both recorded and corrected’ as explained
above, are given in table 5. They show considerable departures from a linear variation with
M3, to a degree which was unexpected.
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On the other hand, the functions %, and r,, at constant 5, vary considerably with .#2.
Results for .#% = 0 and 10 are given in table 6 and shown graphically in figures 13 and 14.
The reason for this can be seen from an examination of the magnitudes of the terms in
equation (8-241ii) for f;, from which it appears that if 4, and r, varied only little with .#%,
the inhomogeneous term fm#, in the numerator in this formula, which term is proportional

+075

+050 -~ \
/ Mi=0
+0-25 ==

-0-25

N

1 2 3 4 5

Ficure 13. £k, as a function of 7.

0-5
0-4\

W
0-3

N

0-2

0-1

\ im0 \\
1

0
7
F1Gure 14. r, as a function of 7.

to .#3%, would already be the predominant term for .#2 = 2; moreover it is negative, so that
already for .#% = 2, the sign of f; would be opposite to that for .#2 = 0. It will be noticed
that this term is absent if f = 0, that is, if the variation of viscosity with temperature is
neglected. Its considerable effect on the solution shows how important it is to take account
of the variation of the viscosity with temperature in considering flow with non-zero pressure
gradient.

Vol. 241. A, 9
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TABLE 6. FIRST-ORDER FUNCTIONS

M}=0 ‘

1 hy=f{ n n
1-:0205 0-0000 0-0000 0-1672
0-9205 0-0970 —0-0180 0-1663
0-8205 0-1841 —0-0333 0-1637
0-7206 0-2612 © —0-0458 0-1597
0-6207 0-3282 —0-0555 0-1546
0-5212 0-3853 —0-0623 0-1487
0-4226 0-4325 —0-0660 0-1423
0-3255 0-4699 —0-0668 0-1356
0-2309 0-4977 —0-0648 0-1290
0-1404 0-5162 —0-0603 0-1227
0-0556 0-5260 —0:0537 0-1170

—0-0216 0-5276 —0-0452 0-1120
—0-0895 0-5220 —0-0356 0-1080
—0-1463 0-5101 —0-0256 0-1049
—0-1909 0-4931 —0-0156 0-1029
—0-2226 0-4723 —0-0062 0-1018
—0-2414 0-4490 +0-0021 0-1016
—0-2482 0-4244 0-0090 0-1021
—0-2442 0-3997 0-0143 0-1033
—0-2314 0-3759 0-0181 0-1050
—0-2120 0-3537 0-0203 0-1069
—0-1883 0-3336 0-0212 0-1090
—0-1624 0-3161 0-0211 0-1111
—0-1362 0-3012 0-0201 0-1132
—0-1113 0-2888 0-0185 0-1151
—0-0886 0-2788 0-0166 0-1169
—0-0688 0-2710 0-0145 0-1184
—0-0521 0-2650 0-0124 0-1198
—0-0385 0-2605 0-0104 0-1209
—0-0278 0-2572 0-0085 0-1218
—0-0196 0-2548 0-0068 0-1226
—0-0136 0-2531 0-0053 0-1232
—0-0091 0-2520 0-0041 0-1237
—0-0060 0-2513 0-0031 0-1240
—0-0039 0-2508 0-0023 0-1243
—0-0024 0-2505 0-0017 0-1245
—0-0015 0-2503 0-0012 0-1247
—0-0009 0-2502 0-0009 0-1248
—0-0005 0-2501 0-0006 0-1248
—0-0003 0-2501 0-0004 0-1249
—0-0002 0-2500 0-0003 0-1249
—0-0001 0-2500 0-0002 0-1250
—0-0001 0-2500 0-0001 0-1250
0-0000 0-2500 0-0001 0-1250
0-0000 0-1250

0-1250
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TABLE 6 (cont.)

M2=10

I Iy n n 3 3
0-5198 0-0000 0-0000 0-4577 0-000 0-000
0-2806 0-0400 —0-0265 0-4563 — 0-490 — 0-024
0-0499 0-0564 —0-0469 0-4526 — 1.043 — 0-100
—0-1639 0-0506 —0-0613 0-4472 — 1-657 — 0-235
—0-3524 0-0245 —0-0704 0-4405 — 2:325 — 0433
—0-5081 —0-0188 —0-0752 0-4332 — 3:039 — 0-701
—0-6243 —0-0758 —0-0767 0-4256 — 3788 — 1.042
—0-6957 —0-1423 —0-0763 0-4180 — 4560 — 1-459
—0-7190 —0-2134 —0-0753 0-4104 — 5-340 — 1954
—0-6935 —0-2844 —0-0750 0-4029 — 6114 — 2:527
—0-6214 —0-3505 —0-0766 0-3953 — 6-864 — 3176
—0-5078 —0-4073 —0-0809 0-3874 — 7574 — 3899
—0-3610 —0-4510 —0-0882 0-3790 — 8230 — 4-689
—0-1914 —0-4788 —0-0984 0-3697 — 8818 — 5542
—0-0113 —0-4890 —0-1108 0-3592 — 9-326 — 6450
+0-1666 —0-4812 —0-1245 0-3475 — 9748 — 7405
+0-3302 —0-4561 —0-1382 0-3344 —10-079 — 8397
0-4693 —0-4159 —0-1505 0-3199 ~10-321 — 9418
0-5763 —0-3633 —0-1603 0-3043 —10-477 —10-458
0-6472 —0-3018 —0-1667 0-2880 —10-556 —11-510
0-6813 —0-2351 —0-1692 0-2712 —10-569 —12-566
0-6812 —0-1667 —0-1676 0-2543 ~10-528 —13-622
0-6520 —0-0999 —0-1621 0-2377 —10-447 —14-671
0-6004 —0-0371 —0-1533 0-2219 —10-340 ~15-711
0-5328 +0-0197 —0-1418 0-2072 —10-220 —16-739
0-4593 0-0694 —0-1285 0-1936 —10-097 —17-755
0-3832 0-1115 —0-1140 0-1815 — 9977 —18-759
0-3105 0-1461 —0-0992 0-1708 — 9-868 —19-751
0-2446 0-1738 —0-0847 0-1617 — 9773 —20-733
0-1875 0-1913 —0-0710 0-1539 — 9-691 —21-706
0-1400 02116 —0-0585 0-1474 — 9624 —22-671
0-1019 0-2236 —0-0472 0-1422 — 9571 —23-631
0-0723 0-2323 —0-0371 0-1380 — 9529 —24-586
0-0501 0-2384 —0-0293 0-1346 — 9-498 —25-537
0-0339 0-2425 —0-0225 0-1320 — 9474 —26-486
0-0223 0-2452 —0-0170 0-1300 — 9-457 —27-432
0-0144 0-2470 —0-0126 0-1286 — 9444 —28:377
0-0091 0-2482 —0-0092 0-1275 — 9435 —29-321
0-0056 0-2490 —0-0066 0-1267 — 9429  —30-264
0-0034 0-2494. —0-0047 0-1261 — 9424 —31-207
0-0020 0-2497 —0-0032 0-1258 — 9422 —32:149
0-0012 0-2498 —0-0022 0-1255 — 9-420 —33-091
0-0007 0-2499 —0-0015 0-1253 — 9418 —34-033
0-0004 0-2499 —0-0010 0-1252 — 9417 —34-975
0-0002 0-2500 —0-0007 0-1251 — 9417 —35-917
0-0001 0-2500 —0-0005 0-1251 — 9417 —36:858
0-0001 0-2500 —0-0003 0-1250 — 9417 —37-800
0-0000 0-2500 —0-0002 0-1250 — 9417 —38.742
0-2500 —0-0001 0-1250 — 9417 —39-684
0-2500 —0-0001 0-1250 — 9417 —40-625
0-2500 0-1250 — 9-417 —41-567
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20. THE HEAT TRANSFER CASE. (Added in proof)

As originally written, the present paper was restricted to the case of no heat transfer.
But, because of the interest now being taken in certain cases of heat transfer at high gas
speeds, it is desirable to indicate very briefly the changes in treatment needed to pass to
the case when there is a heat transfer.

The essential difference is that the plate is maintained at a prescribed temperature
which will be denoted by 7, (leaving T, to denote the temperature, sometimes called the
‘natural’ temperature, which it attains when there is no heat transfer), which may be
a (known) function of x. This implies that (d77dy), =+ 0, and hence that 7,(0) is non-zero
for at least some 7, and is given.

The treatment used in this paper, applied to this case, indicates that the heat transfer
coefficient should be related to 7j,—T,, and not to 7;,—7]. It can be argued that the
same conclusion would apply to a turbulent layer, though the argument is suggestive
rather than conclusive.

Previous work in this field seems to have been confined to the case of no pressure drop,
constant 7}, and .#, =0. Pohlhausen (F.D., p. 623) obtained a solution of equation
(11-41), with the dissipation term omitted. He showed that a very good approximation
to the results obtained from the accurate solution was given by the formulae, in the usual
notation, N = 0-664 3%,

& = 0-664 0“3‘.@“%,}
where both 4" and & are related to 7},—7;. Eckert & Drewitz (1940), (quoted by Jacob
1947) showed that the inclusion of the dissipation term in the equation left these formulae
unaffected if 7}, were substituted for 7}, and gave reasons for thinking that this result was
generally true.

The analysis of this case, based on the treatment of the present paper, confirms their
conjecture both for any value of .#,, and for functions of any order. Moreover both the
calculations by Emmons & Brainerd (1941, 1942) and those reported in this paper show
that C;, as a function of %, varies only slowly with .#; so it seems likely that the relations
(20), properly interpreted, could be used to predict the heat transfer from a flat plate
in a uniform supersonic stream up to .#% =20 with ample accuracy for most practical
purposes. In this connexion, it is worth recalling that the approximate formula

Ty =T\[1+3(y—1) A}ol]
is also of use up to these values of 4.

No attempt has been made to examine in detail the computing technique involved in
the solution of the general equations of the heat transfer case. But it seems likely that,
once the programme outlined in §19 has been completed, the methods outlined in §§12
and 13, with appropriate changes in boundary conditions, could be used in an iterative
process without a prohibitive amount of labour.

(20)

'

Part of the work described above was carried out in the Engineering Division, National
Physical Laboratory, on behalf of the Chief Scientific Officer, Ministry of Supply, by whose
permission this paper is published. This work was carried out by us jointly (§§ 1 to 5 and § 20
mainly by W.F.C. and a first version of § 6 and §§ 8 to 12 by D.R.H.).
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The remainder was carried out by one of us (D.R.H.) in the course of a visit to the Moore
School of Electrical Engineering of the University of Pennsylvania, at the invitation of the
Ordnance Department of the U.S. War Department, to study the ENIAC and its possible
applications. He wishes to express his deep appreciation of the opportunity of making this
visit and of making first-hand acquaintance of the ENIAC, and his thanks to Colonel
P. N. Gillon, of the Office of the Chief of Ordnance, for making the arrangements for this
visit, to Dr L. S. Dederick, of the Ballistics Research Laboratory, Aberdeen, Maryland, for
agreeing to make the ENIAC available for the work considered in §§15 to 18, to Dr and
Mrs H. H. Goldstine, to Dr D. H. Lehmer and other members of the group engaged in the
operation of the machine, and especially to Miss K. McNulty, for instruction, advice and
help in organizing the work for the machine, planning the machine set-up for it, and in
running the machine. The active and friendly help received made the work, in addition to
being of absorbing interest, a real pleasure. He also wishes to thank Miss Mumford and
Mrs Pryor for assistance in carrying out the work involved in the numerical evaluation of
various solutions by the iterative methods indicated in §§ 12 and 13.
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Ficure 1. Photographs of 0-303 in. bullets in flight showing boundary layer separation.
Nominal velocity 1700 ft. per sec. Mach number about 14. Arrows point to approximate
yosition of separation. (e¢) Mark VIIIz. Yaw small. (b) Mark VII. Yaw 10°.

¢) Mark VII. Yaw 25°.

(Facing p. 4)
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